
29TH WORLD CONTINUOUS AUDITING AND REPORTING SYMPOSIUM (29WCARS), NOVEMBER 21-22, 2013, BRISBANE, AUSTRALIA 1

ICT Support for Regulatory Compliance

of Business Processes

Guido Governatori

NICTA, Australia

guido.governatori@nicta.com.au

Abstract—In this paper we propose an ITC (Information
and Communication Technology) approach to support regu-
latory compliance for business processes, and we report on
the development and evaluation of a business process com-
pliance checker called Regorous, based on the compliance-by-
design methodology proposed by Governatori and Sadiq [1].

I. Introduction

Regulatory compliance is the set of activities an enterprise

does to ensure that its core business does not violate relevant

regulations, in the jurisdictions in which the business is

situated, governing the (industry) sectors where the enterprise

operates.

�e activities an organisation does to achieve its business

objectives can be understood as business processes, and

consequently they can be represented by business process

models. On the other hand a normative document (e.g., a code,

a bill, an act) can be understood as a set of clauses, and these

clauses can be represented in an appropriate formal language.

Based on this [2] proposed that business process compliance is

a relationship between the formal representation of a process

model and the formal representation of a relevant regulation.

�e speci�c relationship is that the formal speci�cations for

the business process do not violate the conditions set out by

the formal speci�cations modelling the regulation.

To gain compliance di�erent strategies can be devised. [3]

classi�es approaches to compliance as detective, corrective and
preventative.
Detective measures are intended to identify “a�er-the-fact”

un-compliant situations. �ere are two main approaches: (a)

retrospective reporting through manual audits by consultants

or through IT forensics and Business Intelligence tools; (b)

automated detections generating audit reports against hard-

coded checks performed on the requisite system. Unlike the

�rst approach, automated detection reduces the assessment

time and consequently also the time of un-compliance

remediation/mitigation.

Corrective measures are intended to limit the extent of any

consequence caused by un-compliant situations. For example,

situations that can arise from the introduction of a new norm

impacting upon the business, to the organisation coming

under surveillance and scrutiny by a control authority or to

an enforceable undertaking.

�e two approaches above su�er from lack of sustainability,
caused by the extreme interest of companies in continuous

improvements of the quality of services, and for changing

legislations and compliance requirements. Indeed, even with

automated detection means, the hard coded checking of

repositories can quickly grow to a very large scale making it

extremely di�cult to evolve and maintain. To obviate these

problem [4], [5] propose a preventative focus based on the

idea of compliance-by-design.
�e key aspect of the compliance-by-design methodology

is to supplement business process models with additional

information to ensure that a business process is compliant

with relevant normative frameworks before the deployment

of the process itself.

From the previous discussion it should be clear that for

an e�ective and successfully application of ICT (Information

and Communication Technology) techniques to the problem

of ensuring that business processes are compliant with

the relevant regulations we need two components: (i) a

conceptually sound formal representation of a business process

and (ii) a conceptually sound formalism to model and to

reasoning with norms. In Section II we will recall the basic

of business process modelling. In Section III we propose a

model of norms which provides a conceptually sound, rich

and comprehensive classi�cation of normative concepts (i.e.,

obligations, prohibitions, permission and violation) described

in terms of processes. Each notion introduced in this section is

justi�ed by a concrete case taken from existing statutory acts,

regulations or other legally binding documents. Section IV

is dedicated to give proper de�nitions of what it means for

a process to be compliant with a given set of norms. In

Section V we describe the architecture of Regorous Process

Designer, a compliance checker based on the methodology

proposed by Governatori and Sadiq [1]. Section VI describes

the implementation of Regorous and reports on an industry

scale case study which has been used to empirically evaluate

the approach. We conclude the paper with a short discussion

of how the proposed approach can be used in di�erent phases

of the lifecycle of a process and relationships with monitoring

and auditing (Section VII). Section VIII quickly discusses some

closely related work.

II. Business Process Modelling

In this section we provide the vary basics of business

process modelling, for an extensive presentation see [6]. A

business process model is a self-contained, temporal and

logical order in which a set of activities are executed to

achieve a business goal. Typically a process model describes

guido.governatori@nicta.com.au

29TH WORLD CONTINUOUS AUDITING AND REPORTING SYMPOSIUM (29WCARS), NOVEMBER 21-22, 2013, BRISBANE, AUSTRALIA 2

what needs to be done and when (control �ow), who is going

to do what (resources), and on what it is working on (data).

Many di�erent formalisms (Petri-Nets, Process algebras, . . .)

and notations (BPMN, YAWL, EPC, . . .) have been proposed

to represent business process models. Besides the di�erence

in notation, purposes, and expressive power, business process

languages typically contain the following minimal set of

elements:

• tasks

• connectors

where a task corresponds to a (complex) business activity, and

connectors (e.g., sequence, and-join, and-split, (x)or-join, (x)or-

split) de�ne the relationships among tasks to be executed.

�e combination of tasks and connectors de�nes the possible

ways in which a process can be executed. Where a possible

execution, called process trace or simply trace, is a sequence

of tasks respecting the order given by the connectors.

A

B

D

E

C

Figure 1. Example of a business process model in standard BPMN notation

Consider the process in Figure 1, in standard BPMN

notation, where we have a task A followed by an xor split. In

the xor split in one of the branches we have task B followed by

the and-split of a branch with task D, and a brach consisting

of only task E. �e second branch of the xor-split has only one

task: C . �e traces corresponding to the process are 〈A,C〉,
〈A,B,D,E〉 and 〈A,B,E,D〉. Given a process P we will use

TP = {t1,t2, . . . } to denote the set of traces of P .
Compliance is not only about the tasks an organisation

has to perform to achieve its business goals, but it is also

concerned on their e�ects (i.e., how the activities in the

tasks change the environment in which they operate), and

the artefacts produced by the tasks (for example, the data

resulting from executing a task or modi�ed by the task)

[7]. To capture this aspect [4] proposed to enrich process

models with semantic annotations. Each task in a process

model can have a�ached to it a set of semantic annotations.

An annotation is just a set of formulas giving a (partial)

description of the environment in which a process operates.

�en, it is possible to associate to each task in a trace a set of

formulas corresponding to the state of the environment a�er

the task has been executed in the particular trace. Notice,

that di�erent traces can results in di�erent states, even if the

tasks in the traces are the same. In addition, even if the end

states are the same, the intermediate states can be di�erent.

Accordingly, we extend the notion of trace. First of all, we

introduce the function

State : TP × N 7→ 2
L ,

where L is the set of formulas of the language used to

model the annotations. Let us illustrate with an example

the meaning of the function State. Suppose we have the trace

t = 〈A,B,D,E〉, and that State(t ,3) = {p,q,r }. �is means that

{p,q,r } is the state resulting a�er executing D in the trace t (D
is the third task in t). Notice that a trace uniquely determines

the sequence of states obtained by executing the trace. �us,

in what follows we use a trace to refer to a sequence of tasks,

and the corresponding sequence of states.

III. Normative Reqirements

A. Modelling Norms

�e scope of norms is to regulate the behaviour of their

subjects and to de�ne what is legal and what is illegal.

Norms typically describe the conditions under which they

are applicable and the normative e�ects they produce when

applied. A comprehensive list of normative e�ects is provided

in [8]. In a compliance perspective, the normative e�ects

of importance are the deontic e�ects (also called normative

positions). �e basic deontic e�ects are: obligation, prohibition
and permission.1

Let us start by consider the basic de�nitions for such

concepts:
2

Obligation A situation, an act, or a course of action to which

a bearer is legally bound, and if it is not achieved or

performed results in a violation.

Prohibition A situation, an act, or a course of action which

a bearer should avoid, and if it is achieved results in a

violation.

Permission Something is permi�ed if the obligation or the

prohibition to the contrary does not hold.

Obligations and prohibitions are constraints that limit the

space of action of processes; the di�erence from other types

of constraints is that they can be violated, and a violation

does not imply an inconsistency within a process with the

consequent termination of or impossibility to continue the

business process. Furthermore, it is common that violations

can be compensated for, and processes with compensated

violations are still compliant [1], [10], [11]; for example

contracts typically contain compensatory clauses specifying

penalties and other sanctions triggered by breaches of other

contract clauses [12]. Not all violations are compensable,

and the presence of uncompensated violations means that

a process is not compliant. Permissions cannot be violated,

thus permissions do not play a direct role in compliance;

they can be used to determine that there are no obligations

or prohibitions to the contrary, or to derive other deontic

e�ects. Legal reasoning and legal theory typically assume a

strong relationship between obligations and prohibitions: the

prohibition of A is the obligation of ¬A (the opposite of A),
and then if A is obligatory, then ¬A is forbidden [9]. In this

paper we will subscribe to this position, given that our focus

here is not on how to determine what is prescribed by a set

1
�ere are other deontic e�ects, but these can be derived from the basic

ones, see [9].

2
Here we consider the de�nition of such concepts given by the OASIS

LegalRuleML working group. �e OASIS LegalRuleML glossary is available

at h�p://www.oasis-open.org/apps/org/workgroup/legalruleml/download.php/

48435/Glossary.doc.

http://www.oasis-open.org/apps/org/workgroup/legalruleml/download.php/48435/Glossary.doc
http://www.oasis-open.org/apps/org/workgroup/legalruleml/download.php/48435/Glossary.doc

29TH WORLD CONTINUOUS AUDITING AND REPORTING SYMPOSIUM (29WCARS), NOVEMBER 21-22, 2013, BRISBANE, AUSTRALIA 3

of norms and how to derive it. Accordingly, we can restrict

our analysis to the notion of obligation.
Compliance means to identify whether a process violates

or not a set of obligations. �us, the �rst step is to determine

whether and when an obligation is in force. Hence, an

important aspect of the study of obligations is to understand

the lifespan of an obligation and the consequence it has on

the activities carried out in a process. As we have alluded to

above norms give the conditions of applicability of obligations.

�e question then is how long does an obligation hold for,

and based on this there are di�erent conditions to ful�ll the

obligation. We take a systematic approach to this issue. A

norm can specify that an obligation is in force for a particular

time point or, more o�en, a norm indicates when an obligation

enters in force. An obligation remains in force until terminated

or removed. Accordingly, in the �rst case we will speak

of punctual obligations and in the second case of persistent
obligations.
For persistent obligations we can ask if to ful�ll an

obligation we have to obey to it for all instants in the

interval in which it is in force, maintenance obligations, or
whether doing or achieving the content of the obligation at

least once is enough to ful�ll it, achievement obligations. For
achievement obligations another aspect to consider is whether

the obligation could be ful�lled even before the obligation is

actually in force. If this is admi�ed, then we have a preemptive
obligation, otherwise the obligation is non-preemptive.

�e �nal aspect we want to touch upon in this section is the

termination of obligations. Norms can specify the interval in

which an obligation is in force. Previously, we discussed that

what di�erentiates obligations and other constraints is that

obligations can be violated. What are the e�ects of a violation

on the obligation the violation violates? More precisely, does

a violation terminate the violated obligation? Meaning, do

we still have to comply with a violated obligation? If we

do –the obligation persists a�er being violated– we speak of

a perdurant obligation, if it does not, then we have a non-
perdurant obligation.
�e classi�cation discussed above is exhaustive. It has

been obtained in a systematic and comprehensive way when

one considers the aspect of the validity of obligations –or

prohibitions– (i.e., whether they persist a�er they enter in

force or they are valid only for a speci�c time unit), and the

e�ects of violations on them, namely: whether a violation can

be compensated for, and whether an obligation persists a�er

being violated. In the next section we will provide formal

de�nitions for the notions introduced in this section and for

each case we will show examples taken form statutory acts

and other legally binding documents.

B. Modelling Obligations
In this section we provide the formal de�nitions underpin-

ning the notion of compliance. In particular we formally de�ne

the di�erent types of obligations introduced in Section III-A.

De�nition 1 (Obligation in force): Given a process P , and a

trace t ∈ TP . We de�ne a function

Force : TP × N 7→ 2
L .

�e function Force associates to each task in a trace a set

of literals, where these literals represent the obligations in

force for that combination of task and trace. �ese are among

the obligations that the process has to ful�ll to comply with

a given normative framework. In the rest of the section we

are going to give de�nitions specifying when the process has

to ful�ll the various obligations (depending on their type) to

be deemed compliant.

De�nition 2 (Punctual Obligation): Given a process P and

a trace t ∈ TP , an obligation o is a punctual obligation in t if

and only if ∃n ∈ N such that

1) o < Force(t ,n − 1),
2) o < Force(t ,n + 1), and
3) o ∈ Force(t ,n).

A punctual obligation o is violated in t if and only if o <
State(t ,n).3

A punctual obligation is an obligation that is in force in one

task of a trace (it might be the case that there are multiple

instances in which the obligation is in force). �e obligation

is violated if what the obligation prescribes is not achieved in

or done by the task, where this is represented by the literal

not being in the set of literals associated to the task in the

trace.

De�nition 3 (Achievement Obligation): Given a process P
and a trace t ∈ TP , an obligation o is an achievement obligation
in t if and only if ∃n,m ∈ N,n < m such that

1) o < Force(t ,n − 1),
2) o < Force(t ,m + 1), and
3) ∀k : n ≤ k ≤ m,o ∈ Force(t ,k)

An achievement obligation o is violated in t if and only if

• o is preemptive and ∀k : k ≤ m, o < State(t ,k);
• o is non-preemptive and ∀k : n ≤ k ≤ m, o < State(t ,k).
An achievement obligation is in force in a contiguous set

of tasks in a trace. �e violation depends on whether we have

a preemptive or a non-preemptive obligation. A preemptive

obligation o is violated if no state before the last task in which

o is in force has o in its annotations; for a non-preemptive

obligation the set of states is restricted to those de�ned by

the interval in which the obligation is in force.

Example 1: Australian Telecommunications Consumers

Protection Code 2012 (TCPC 2012). Article 8.2.1.

A Supplier must take the following actions to enable this

outcome:

(a) Demonstrate fairness, courtesy, objectivity and
e�ciency: Suppliers must demonstrate, fairness and

courtesy, objectivity, and e�ciency by:

(i) Acknowledging a Complaint:

A. immediately where the Complaint is made in

person or by telephone;

B. within 2 Working Days of receipt where the

Complaint is made by email;

�e obligation to acknowledge a compliant made in person

or by phone (8.2.1.a.i.A) is a punctual obligation, since it has

3
For the conditions de�ning when an obligation is violated we assume

the same conditions de�ning the type of the obligation. For example, in this

case ∃n ∈ N such that o ∈ Force(t, n).

29TH WORLD CONTINUOUS AUDITING AND REPORTING SYMPOSIUM (29WCARS), NOVEMBER 21-22, 2013, BRISBANE, AUSTRALIA 4

to be done ‘immediately’ while receiving it (thus it can be

one of the activities done in the task ‘receive complaint’).

8.2.1.a.i.B on the other hand is an achievement obligation

since the clause gives a deadline to achieve it. In addition it is

a non-preemptive obligation. It is not possible to acknowledge

a complaint before having it.

Example 2: Anti-Money Laundering and Counter-Terrorism

Financing Act 2006. Clause 54 (Timing of reports about

physical currency movements).

(1) A report under section 53 must be given:

(a) if the movement of the physical currency is to be

e�ected by a person bringing the physical currency

into Australia with the person—at the time worked

out under subsection (2); or

[. . .]

(d) in any other case—at any time before the movement

of the physical currency takes place.

Clause (d) illustrates a preemptive obligation. �e obligation

is in force when a �nancial transaction occurs, and the clause

explicitly requires the report to be submi�ed to the relevant

authority before the transaction actually occurs (it might be

the case that the transaction never occurs).

De�nition 4 (Maintenance Obligation): Given a process P
and a trace t ∈ TP , an obligation o is a maintenance obligation
in t if and only if ∃n,m ∈ N, n < m such that:

1) o < Force(t ,n − 1),
2) o < Force(t ,m + 1), and
3) ∀k : n ≤ k ≤ m,o ∈ Force(t ,k)

A maintenance obligation o is violated in t if and only if

∃k : n ≤ k ≤ m,o < State(t ,k).

Similarly to an achievement obligation, a maintenance

obligation is in force in an interval. �e di�erence is that

the obligation has to be complied with for all tasks in the

interval, otherwise we have a violation.

Example 3: TCPC 2012. Article 8.2.1.

A Supplier must take the following actions to enable this

outcome:

(v) not taking Credit Management action in relation to

a speci�ed disputed amount that is the subject of

an unresolved Complaint in circumstances where the

Supplier is aware that the Complaint has not been

Resolved to the satisfaction of the Consumer and is

being investigated by the Supplier, the TIO or a relevant

recognised third party;

In this example, as it is o�en the case, a maintenance

obligation implements a prohibition. Speci�cally, it describes

the prohibition to initiate a particular type of activity until

either a particular event takes place or a state is reached.

�e next three de�nitions are meant to capture the notion of

compensation of a violation. �e idea is that a compensation

is a set of penalties or sanctions imposed on the violator, and

ful�lling them makes amend for the violation. �e �rst step

is to de�ne what a compensation is. A compensation is a

set of obligations in force a�er a violation of an obligation

(De�nitions 5 and 6). Since the compensations are obligations

themselves they can be violated, and they can be compensable

as well, thus we need a recursive de�nition for the notion of

compensated obligation (De�nition 7).

De�nition 5 (Compensation): A compensation is a function

Comp : L 7→ 2
L
.

De�nition 6 (Compensable Obligation): Given a process P
and a trace t ∈ TP , an obligation o is compensable in t if and

only if

1) Comp(o) , ∅ and
2) ∀o′ ∈ Comp(o),∃n ∈ N : o′ ∈ Force(t ,n).
De�nition 7 (Compensated Obligation): Given a process P

and a trace t ∈ TP , an obligation o is compensated in t if and

only if it is violated and for every o′ ∈ Comp(o) either:
1) o′ is not violated in t , or
2) o′ is compensated in t .

For a stricter notion, i.e., a compensated compensation

does not amend the violation the compensation was meant

to compensate, we can simply remove the recursive call, thus

removing clause 2 from the above condition.

Compensations can be used for two purposes. �e �rst

is to specify alternative, less ideal, outcomes. �e second is

to capture sanctions and penalties. Examples 4 and 5 below

illustrate, respectively, these two usages.

Example 4: TCPC 2012. Article 8.1.1.

A Supplier must take the following actions to enable this

outcome:

(a) Implement a process: implement, operate and comply

with a Complaint handling process that:

(vii) requires all Complaints to be:

A. Resolved in an objective, e�cient and fair manner;

and

B. escalated and managed under the Supplier’s in-

ternal escalation process if requested by the Con-

sumer or a former Customer.

Example 5: YAWL Deed of Assignment, Clause 5.2.
4

Each Contributor indemni�es and will defend the Foundation

against any claim, liability, loss, damages, cost and expenses

su�ered or incurred by the Foundation as a result of any

breach of the warranties given by the Contributor under

clause 5.1.
�e �nal de�nition is that of perdurant obligation. �e

intuition behind it is that there is a deadline by when the

obligation has to be ful�lled. If it is not ful�lled by the deadline

then a violation is raised, but the obligation is still in force.

Typically, the violation of a perdurant obligation triggers a

penalty, thus if the perdurant obligation is not ful�lled in time,

then the process has to account for the original obligation as

well as the penalties associated with the violation.

De�nition 8 (Perdurant Obligation): Given a process P and

a trace t ∈ TP , an obligation o is a perdurant obligation in t if

and only if ∃n,m ∈ N, n < m such that

1) o < Force(t ,n − 1),
2) o < Force(t ,m + 1), and
3) ∀k : n ≤ k ≤ m,o ∈ Force(t ,k).

4
h�p://www.yawlfoundation.org/�les/YAWLDeedOfAssignmentTemplate.

pdf, retrieved on March 28, 2013.

http://www.yawlfoundation.org/files/YAWLDeedOfAssignmentTemplate.pdf
http://www.yawlfoundation.org/files/YAWLDeedOfAssignmentTemplate.pdf

29TH WORLD CONTINUOUS AUDITING AND REPORTING SYMPOSIUM (29WCARS), NOVEMBER 21-22, 2013, BRISBANE, AUSTRALIA 5

A perdurant obligation o is violated in t if and only if

∃k : n < k < m, ∀j, j ≤ k, o < State(t , j)

Consider again Example 1. Clauses TCPC 8.2.1.a.i.A and

8.2.1.a.i.B state what are the deadlines to acknowledge a

complaint, but 8.2.1.a.i prescribes that complaints have to

be acknowledged. �us, if a complaint is not acknowledged

within the prescribed time then either clause A or B are viol-

ated, but the supplier still has the obligation to acknowledge

the complaint. �us the obligation in clause (i) is a perdurant

obligation.

IV. Modelling Compliance

�e set of traces of a given business process describes the

behavior of the process insofar as it provides a description

of all possible ways in which the process can be correctly

executed. Accordingly, for the purpose of de�ning what it

means for a process to be compliant, we will consider a

process as the set of its traces.

Intuitively a process is compliant with a normative system
5

if it does not breach the normative system. Given that, in

general, it is possible to perform a business process in many

di�erent ways, thus we can have two notions of compliance,

namely:

(S1) A process is (fully) compliant with a normative system

if it is impossible to violate the normative system while

executing the process.

�e intuition about the above condition is that no ma�er in

which way the process is executed, its execution does not

violate the normative system. For the second one we consider

the case that there is an execution of the process that does

not violate the norms.

(S2) A process is (partially) compliant with a normative

system if it is possible to execute the process without

violating the normative system.

Based on the above intuition we can give the following

de�nition:

De�nition 9: Let N be a normative system.

1) A process P fully complies with N if and only if every

trace t ∈ TP complies with N .

2) A process P partially complies with N if and only if

there is a trace t ∈ TP that complies with N .

Notice that in (S1) and (S2) compliance means “lack of

violations” while in De�nition 9 we had “comply with”. For

the purpose of this paper we will treat these two concepts as

equivalent. More precisely they are related by the following

de�nition.

De�nition 10: A trace t complies with a normative system

N = {n1,n2, . . . } if and only if all norms in N have not been

violated.

5
Here, by normative system we simply mean a set of norms, where a norm

is a formula in the underlying (deontic) language. For a business process

the normative system could vary from a particular regulation, to a speci�c

statutory act, a set of best practices, a standard, simply a policy internal to

an organisation or a combination of these types of prescriptive documents.

In Section III-A we introduced various types of norms and

for each type we described its semantics in terms of what

constitutes a violation of a norm of that type.

�e possibility of a norm to be violated is what distinguish

norms from other types of constraints. �en, given that

violations are possible, one has to consider that violations

can be compensated. Is a process where some norms have

violated and compensated for compliant? To account for this

possibility we introduce the distinction between strong and

weak compliance. Strong compliance corresponds to De�nition

10. Weak compliance is de�ned as follows:

De�nition 11: A trace t is weakly compliant with a normative

system N if and only if every violated norm has been

compensated for.

V. Regorous Architecture

In this section we introduce the architecture of Regorous

Process Designer (from now on simply Regorous), a busi-

ness process compliance checker based on the methodology

proposed by Governatori and Sadiq [1].

As we have already discussed to check whether a business

process is compliant with a relevant regulation, we need an

annotated business process model and the formal represent-

ation of the regulation. �e annotations are a�ached to the

tasks of the process, and they can be used to record the data,

resources and other information related to the single tasks in

a process.

For the formal representation of the regulation we use FCL

[12], [13]. FCL is a simple, e�cient, �exible rule based logic.

FCL has been obtained from the combination of defeasible

logic (for the e�cient and natural treatment of exceptions,

which are a common feature in normative reasoning) [14] and

a deontic logic of violations [15]. In FCL norms are represented

by rules with the following form

a1, . . . ,an ⇒ c

Where a1, . . . ,an are the conditions of applicability of the

norm/rule and c is the normative e�ect of the norm/rule.

FCL distinguishes two normative e�ects: the �rst is that of

introducing a de�nition for a new term. For example the rule

customer (x), spending(x) > 1000⇒ premium customer (x)

speci�es that, typically, a premium customer is a customer

who has spent over 1000 dollars. �e second normative e�ect

is that of triggering obligations and other deontic notions.

FCL supports all deontic notions presented in Section III-A,

in addition it has mechanisms to terminate and remove

obligations (see [13] for full details). For obligations and

permission we use the following notation:

• [P]p: p is permi�ed;

• [OM]p: there is a maintenance obligation for p;
• [OAPP]p: there is an achievement preemptive and per-

durant obligation for p;
• [OAPNP]p: there is an achievement preemptive and non-

perdurant obligation for p;
• [OANPP]p: there is an achievement non preemptive and

perdurant obligation for p;

29TH WORLD CONTINUOUS AUDITING AND REPORTING SYMPOSIUM (29WCARS), NOVEMBER 21-22, 2013, BRISBANE, AUSTRALIA 6

• [OANPNP]p: there is an achievement non preemptive

and non-perdurant obligation for p.

Compensations are implemented based on the notion of

‘reparation chain’ [15]. A reparation chair is an expression

O1c1 ⊗ O2c ⊗ · · · ⊗ Oncn , where each Oi is an obligation, and

each ci is the content of the obligation (modelled by a literal).

�e meaning of a reparation chain is that we have that c1 is

obligatory, but if the obligation of c1 is violated, i.e., we have

¬c1, then the violation is compensated by c2 (which is then

obligatory). But if even O2c2 is violated, then this violation is

compensated by c3 which, a�er the violation of c2, becomes

obligatory, and so on.

It is worth noticing that FCL allows deontic expressions

(but not reparation chains) to appear in the body of rules,

thus we can have rules like:

restaurant,[P]sell alcohol ⇒ [OM]show license ⊗
[OAPNP]pay �ne.

�e rule above means that if a restaurant has a license to

sell alcohol (i.e., it is permi�ed to sell it, [P]sell alcohol),
then it has a maintenance obligation to expose the license

([OM]show license), if it does not then it has to pay a �ne

([OAPNP]pay �ne). �e obligation to pay the �ne is non-pre-

emptive (this means it cannot be paid before the violation).

For full description of FCL and its feature see [12], [13].

Finally, FCL is agnostic about the nature of the literals

it uses. �ey can represent tasks (activities executed in a

process) or propositions representing state variables.

Compliance is not just about the tasks to be executed in a

process but also on what the tasks do, the way they change

the data and the state of artefacts related to the process,

and the resources linked to the process. Accordingly, process

models must be enriched with such information. [4] proposes

to enrich process models with semantic annotations. Each task

in a process model can have a�ached to it a set of semantic

annotations. In our approach the semantic annotations are

literals in the language of FCL, representing the e�ects of the

tasks. �e approach can be used to model business process

data compliance [7].

Recommendations

W
h

at
-if

 a
n

al
ys

is

S
ta

tu
s

re
po

rt

Compliance checker

Obligations

Input

Annotated
process model

.

.

.

Logical state
representation

FormalisationLegalese
Rule1

Rule2

Rule3

Rule4

Rule5

Rule6

Rule7

Rule8

Rule9

...

Compliance rule
base & checker

Recommendation sub-system

I*(e1)

I*(e3)

I*(e4)

I*(e2)

T2

Post2

T1

Post1

T4

Post4

T3

Post3

T5

Post5

T6

Post6
T7

Post7

Figure 2. Architecture of Regorous

Figure 2 depicts the architecture of Regorous. Given an

annotated process and the formalisation of the relevant

regulation, we can use the algorithm propose in [13], [16] to

determine whether an annotated process model is compliant.

�e process runs as follows:

• Generate an execution trace of the process.

• Traverse the trace:

– for each task in the trace, cumulate the e�ects of the

task using an update semantics (i.e., if an e�ect in

the current task con�icts with previous annotations,

update using the e�ects of the current tasks).

– use the set of cumulated e�ects to determine which

obligations enter into force at the current tasks. �is

is done by a call to an FCL reasoner.

– add the obligations obtained from the previous step to

the set of obligations carried over from the previous

task.

– determine which obligations have been ful�lled, viol-

ated, or are pending; and if there are violated obliga-

tions check whether they have been compensated.

• repeat for all traces.

A process is compliant if and only if all traces are compliant

(all obligations have been ful�lled or if violated they have

been compensated). A process is weakly compliant if there is

at least one trace that is compliant.

VI. Implementation and Evaluation

Regorous Process Designer is implemented on top of Eclipse.

For the representation of process models, it uses the Eclipse

Activiti BPMN 2.0 plugin, extended with features to allow

users to add semantic annotations to the tasks in the process

model. Regorous is process model agnostic, this means that

while the current implementation is based on BPMN all

Regorous needs is to have a description of the process and the

annotations for each task. A module of Regorous takes the

description of the process and generates the execution traces

corresponding to the process. A�er the traces are generated,

it implements the algorithm outlined in the previous section,

where it uses the SPINdle rule engine [17] for the evaluation

of the FCL rules. In case a process is not compliant (or if it

is only weakly compliant) Regorous reports the traces, tasks,

rules and obligations involved in the non compliance issues

(see Figure 5).

Regorous was tested against the 2012 Australian Telecom-

munications Customers Protection Code (C628-2012). �e

code is e�ective from September 1st 2012. �e code requires

telecommunication operators to provide an annual a�estation

of compliance with the code staring from April 1st 2013. �e

evaluation was carried out in May-June 2012. Speci�cally,

the section of the code on complaint handling has been

manually mapped to FCL. �e section of the code contains

approximately 100 commas, in addition to approximately 120

terms given in the De�nitions and Interpretation section of the

code. �e mapping resulted in 176 FCL rules, containing 223

FCL (atomic) propositions, and 7 instances of the superiority

relation. Of the 176 rules 33 were used to capture de�nitions

of terms used in the remaining rules. Mapping the section of

29TH WORLD CONTINUOUS AUDITING AND REPORTING SYMPOSIUM (29WCARS), NOVEMBER 21-22, 2013, BRISBANE, AUSTRALIA 7

Figure 3. An Opening Credit Card Account Process with Annotations in Regorous

Figure 4. Regulations Relevant to the Opening Credit Card Process

29TH WORLD CONTINUOUS AUDITING AND REPORTING SYMPOSIUM (29WCARS), NOVEMBER 21-22, 2013, BRISBANE, AUSTRALIA 8

Figure 5. Regorous report of traces, rules, and tasks responsible for non-compliance

29TH WORLD CONTINUOUS AUDITING AND REPORTING SYMPOSIUM (29WCARS), NOVEMBER 21-22, 2013, BRISBANE, AUSTRALIA 9

the code required all features of FCL. Table I reports the types

of deontic e�ects present in the FCL mapping, and for each

type the table includes the number of distinct occurrences and,

in parenthesis, the total number of instances (some e�ects

can have di�erent conditions under which they are e�ective).

Table I

Number and types of obligations and permissions in Section 8 of TCPC

Punctual Obligation 5 (5)

Achievement Obligation 90 (110)

Preemptive 41 (46)

Non preemptive 49 (64)

Non perdurant 5 (7)

Maintenance Obligation 11 (13)

Prohibition 7 (9)

Non perdurant 1 (4)

Permission 9 (16)

Compensation 2 (2)

�e evaluation was carried over in cooperation with an

industry partner subject to the code. �e industry partner

did not have formalised business processes. �us, we worked

with domain experts from the industry partner (who had not

been previously exposed to BPM technology, but who were

familiar with the industry code) to draw process models for

the activities covered by the code. �e evaluation was carried

out in two steps. In the �rst part we modelled the processes

as they were. Regorous was able to identify several areas

where the existing processes were not compliant with the

new code. In some cases the industry partner was already

aware of some of the areas requiring modi�cations of the

existing processes. However, some of the compliance issues

discovered by the tools were novel to the business analysts

and were identi�ed as genuine non-compliance issues that

need to be resolved. In the second part of the experiment,

the existing processes were modi�ed to comply with the code

based on the issues identi�ed in the �rst phase. In addition a

few new business process models required by the new code

were designed. As result we generated and annotated 6 process

models. 5 of the 6 models are limited in size and they can

be checked for compliance in seconds. �e largest process

contains 41 tasks, 12 decision points, xor splits, (11 binary, 1

ternary). �e shortest path in the model has 6 tasks, while

the longest path consists of 33 tasks (with 2 loops), and the

longest path without loop is 22 task long. �e time taken to

verify compliance for this process amounts approximately to

40 seconds on a MacBook Pro 2.2Ghz Intel Core i7 processor

with 8GB of RAM (limited to 4GB in Eclipse).

VII. Compliance at Design Time, Run Time and Auditing

�e methodology and tool presented in the previous

sections are primarily meant to help in the design of compliant

business processes according the principle of compliance-by-

design. While Regorous is implemented in a computer system

the proposed approach does not require the processes to be

implement and executed by a work�ow engine. Obviously, an

enterprise obtains major bene�ts when the tasks in a process

are fully automated and the coordination of the order of

execution of the task is under the control of a process-aware

information system (see [18] for an overview of what process-

aware information systems are and their functionalities). In

such a case, assuming a faithful implementation of the process,

all instances of the process are guaranteed to be compliant

removing, potentially, the need of run-time monitoring and

post-execution auditing.

At the other extreme of the spectrum we have the case

where processes are not implemented by work�ow engines.

�e proposed approach is still useful in so far as it can be used

to establish the blue-prints of compliant processes. Clearly, if

the tasks are executed by human operators (and the operators

have �exibility about what operations are executed, and when

to execute them), the tool cannot be used to support run-time

monitoring and auditing, and other well establish methods

have to be used.

�e last situation to consider is when there are no well

de�ned process models, but the business activities (i.e.,

processes) are still supported by ICT technology in the form of

recording of business events and message passing, and writing

them in a log. In this scenario, the approach we proposed can

be still applied. As we have outlined in Section IV Regorous

simulates all the possible (�nite) executions of a process, where

an execution or trace is the sequence of tasks to be executed.

In this case we can use a business event as a task. Here, instead

of annotating the tasks in a process, we do the same on the

business events and messages to recorded (or to be recorded)

in the log, and extract the data using the techniques presented

in [7]. At run-time, a�er each business events Regorous can

compute what are the obligations, prohibitions in force a�er

the business event, and evaluate whether they have been

ful�lled or violated and report the resulting state. For auditing,

Regorous can examine the log, and for each instance, replay

it to determine, using the same algorithms for compliance,

whether the instance was properly executed, and if it was

compliant.

VIII. Conclusions

We reported on the development of a tool, Regorous Process

Designer, for checking the compliance of business processes

with relevant regulations. Regorous was successfully tested

for real industry scale compliance problems. In the recent

years techniques and methodologies to address the problem of

regulatory compliance from an ICT point of view have been

proposed (see [19] for an extensive list of such approaches).

Besides Regorous a few other compliance prototypes have

been proposed. Here we consider some representative ones:

MoBuCom [20], Compass [21] and SeaFlows [22]. MoBuCom

and Compass are based on Linear Temporal Logic (LTL) and

mostly they just address “structural compliance” (i.e., that

the tasks are executed in the relative order de�ned by a

constraint model). �e use of LTL implies that the model on

which these tools are based on is not conceptual relative to

the legal domain, and it fails to capture nuances of reason-

ing with normative constrains such as violations, di�erent

types of obligations, violations and their compensation. For

example, obligations are represented by temporal operators.

29TH WORLD CONTINUOUS AUDITING AND REPORTING SYMPOSIUM (29WCARS), NOVEMBER 21-22, 2013, BRISBANE, AUSTRALIA 10

�is raises the problem of how to represent the distinction

between achievement and maintenance obligations. A possible

solution is to use always for maintenance and sometimes for

achievement, but this leaves no room for the concept of

permission (the permission is dual of obligation, and always

and sometimes are the dual of each other). In addition using

temporal operators to model obligations makes hard to capture

data compliance [7], i.e., obligations that refer to literals in

the same task. SeaFlow is based on �rst-order logic, and it

is well know that �rst oder logic is not suitable to capture

normative reasoning [23]. On the other hand FCL complies

with the guidelines set up in [8] for a rule languages for the

representation of legal knowledge and legal reasoning.

Acknowledgment

NICTA is funded by the Australian Government as represen-

ted by the Department of Communication and the Australian

Research Council through the ICT Centre of Excellence

program.

References

[1] G. Governatori and S. Sadiq, “The journey to business process

compliance”, in Handbook of Research on BPM, J. Cardoso and

W. van der Aalst, Eds., IGI Global, 2009, ch. 20, pp. 426–454.

[2] G. Governatori, Z. Milosevic and S. Sadiq, “Compliance

checking between business processes and business contracts”,

in 10th International Enterprise Distributed Object Computing
Conference (EDOC 2006), P. C. K. Hung, Ed., IEEE Computing

Society, 2006, pp. 221–232.

[3] S. Sadiq and G. Governatori, “Managing regulatory compliance

in business processes”, in Handbook of Business Process
Management, J. van Brocke and M. Rosemann, Eds., vol. 2,

Berlin: Springer, 2010, ch. 8, pp. 157–173.

[4] S. Sadiq, G. Governatori and K. Naimiri, “Modelling of control

objectives for business process compliance”, in BPM 2007, G.
Alonso, P. Dadam and M. Rosemann, Eds., ser. Lecture Notes

in Computer Science, Berlin: Springer, 2007, pp. 149–164.

[5] R. Lu, S. Sadiq and G. Governatori, “Compliance aware

business process design”, in 3rd International Workshop on
Business Process Design (BPD’07), A. H. M. ter Hofstede, B.

Benatallah and H.-Y. Paik, Eds., ser. Lecture Notes in Computer

Science, vol. 4928, Berlin: Springer, 2007, pp. 120–131.

[6] M. Dumas, M. La Rosa, J. Mendling and H. A. Reijers,

Fundamentals of Business Process Management. Springer, 2013.
[7] M. Hashmi, G. Governatori and M. T. Wynn, “Business process

data compliance”, in RuleML 2012, ser. Lecture Notes in

Computer Science series, vol. 7438, Springer, 2012.

[8] T. F. Gordon, G. Governatori and A. Rotolo, “Rules and

norms: requirements for rule interchange languages in the

legal domain”, in RuleML 2009, G. Governatori, J. Hall and A.

Paschke, Eds., ser. LNCS, Berlin: Springer, 2009, pp. 282–296.

[9] G. Sartor, Legal Reasoning: A Cognitive Approach to the Law.
Springer, 2005.

[10] G. Governatori and Z. Milosevic, “Dealing with contract

violations: formalism and domain speci�c language”, in EDOC
2005, IEEE Computer Society, 2005, pp. 46–57.

[11] R. Lu, S. Sadiq and G. Governatori, “Measurement of com-

pliance distance in business processes”, Information Systems
Management, vol. 25, no. 4, pp. 344–355, 2008.

[12] G. Governatori, “Representing business contracts in RuleML”,

International Journal of Cooperative Information Systems, vol.
14, no. 2-3, pp. 181–216, 2005.

[13] G. Governatori and A. Rotolo, “A conceptually rich model of

business process compliance”, in 7th Asia-Paci�c Conference
on Conceptual Modelling (APCCM 2010), S. Link and A. Ghose,

Eds., ser. CRPIT, vol. 110, ACS, 2010, pp. 3–12.

[14] G. Antoniou, D. Billington, G. Governatori and M. J. Maher,

“Representation results for defeasible logic”, ACM Transactions
on Computational Logic, vol. 2, no. 2, pp. 255–287, 2001.

[15] G. Governatori and A. Rotolo, “Logic of violations: a Gentzen

system for reasoning with contrary-to-duty obligations”,

Australasian Journal of Logic, vol. 4, pp. 193–215, 2006.
[16] ——, “An algorithm for business process compliance”, in Legal

Knowledge and Information Systems, E. Francesconi, G. Sartor
and D. Tiscornia, Eds., ser. Frontieres in Arti�cial Intelligence

and Applications, vol. 189, IOS Press, 2008, pp. 186–191.

[17] H.-P. Lam and G. Governatori, “The making of SPINdle”, in

Rule Representation, Interchange and Reasoning on the Web,
G. Governatori, J. Hall and A. Paschke, Eds., ser. LNCS, Berlin:

Springer, 2009, pp. 315–322.

[18] M. Dumas, J. Recker and M. Weske, “Management and engin-

eering of process-aware information systems: introduction to

the special issue”, Information Systems, vol. 37, no. 2, pp. 77–79,
2012.

[19] J. Becker, P. Delfmann, M. Eggert and S. Schwi�ay, “General-

izability and Applicability of Model-Based Business Process

Compliance-Checking Approaches – A State-of-the-Art Ana-

lysis and Research Roadmap”, BuR — Business Research Journal,
vol. 5, no. 2, pp. 221–247, 2012.

[20] F. Maggi, M. Montali, M. Westergaard and W. van der Aalst,

“Monitoring Business Constraints with Linear Temporal Logic:

An Approach Based on Colored Automata”, in BPM 2011, ser.
LNCS, vol. 6896, Springer-Verlag, 2011, pp. 132–147.

[21] A. Elgammal, O. Türetken and W.-J. van den Heuvel, “Using

pa�erns for the analysis and resolution of compliance viola-

tions”, Int. J. Cooperative Inf. Syst., vol. 21, no. 1, pp. 31–54,
2012.

[22] L. T. Ly, S. Rinderle-Ma, K. Göser and P. Dadam, “On enabling

integrated process compliance with semantic constraints in

process management systems - requirements, challenges,

solutions”, Information Systems Frontiers, vol. 14, no. 2,

pp. 195–219, 2012.

[23] H. Herrestad, “Norms and formalization”, in ICAIL 1991, ACM,

1991, pp. 175–184.

	Introduction
	Business Process Modelling
	Normative Requirements
	Modelling Norms
	Modelling Obligations

	Modelling Compliance
	Regorous Architecture
	Implementation and Evaluation
	Compliance at Design Time, Run Time and Auditing
	Conclusions

