

Next Generation Business Intelligence

Information Extraction based Monitoring of Intangibles and Risk Measurement

Marcus Spies, Chair of Knowledge Management, LMU University of Munich

OUTLINE

- PART 1 Monitoring Intangibles Background and Approach
- PART 2 A Pilot Application from the EU MUSING project
- PART 3 A brief Look at appropriate Information Management Infrastructures – Conclusion

Problem Statement – Monitoring Intangibles

goal – monitoring based assessment of intangibles

- "tangibles-based managerial information systems are wholly inadequate for the management of knowledge-based enterprises" (Baruch Lev, Intangibles)
- extend the "real time enterprise" to management of intangibles
 - up-to-date actionable reporting and accounting
 - risk management for intangibles and their business impact
- analysis of weakly structured or unstructured data
 - footprints of intangibles in written reports, comments, posts, chats, process logs, log files from IT infrastructure

Generic analysis approach

- register internal or external events relevant to intangibles
- capture properties of events using information extraction
 CONDITION
 - classification of events in terms of suitable taxonomies
 - firing of appropriate rules, statistical inferences
- - corrective or improving actions
 - measures for managing performance
- In extension of processing architecture in business rules engines

Event driven analysis of intangibles

What are relevant events?

- External an invention threatening your patent portfolio
- Internal loss of a customer
- Events can originate in core, management or support processes
- only a limited subset of these events becomes visible in conventional EPR data
 - event subscription mechanisms will not work
- need a method for capturing events from different data sources

✓ we discuss information extraction in part 2

Identifying event impact by matching conditions

- in common business applications, an event is monitored and acted on by observing components
 - ✓ e.g., component failure → check for needed maintenance action, issue a warning etc.
 - this has given rise to event driven architectures
- properties of events impacting *intangibles* must be evaluated against items in suitable taxonomies
 - some degree of semantics based or rule based processing is needed
 - ✓ this is where reporting and accounting methods come in
- event properties influence action by evaluating them against a changing set of business rules
 - e.g., regulatory compliance rules / customer issues

Taking Actions on the basis of identified intangibles issues

- Basis for our approach the eXtensible Business Reporting Language XBRL
 - recent extensions to XBRL of high relevance to monitoring intangibles
 - WICI XBRL for intellectual capital, see contribution by Amy Pawlicki to this symposium
 - GRC-XML XBRL for governance and regulatory compliance
 - both extensions allow to define KPIs and link control or correction actions to conditions or issues

Operational Risk Management extended to Intangibles

✓ strong relationship of present work also to operational risk (OpR) management ✓ focus on operational data driven analysis methods ✓ focus on risk measurement approach to intangibles assessment \checkmark in OpR, actions are modelled as risk minimizing options, this brings in a decision making perspective

A pilot application – knowledge intensive business analytics

Result from EU MUSING project

- Multi-Industry Semantics Based Next Generation Business Intelligence
 - www.musing.eu
 - April 2006 April 2010

Next Generation Business Intelligence

- goal combine the strengths of artificial and business intelligence
 - integrate knowledge modelling and statistical inference
 - blueprint new generation of analytics services

MUSING Partners

Key for MUSING – Leverage the potential of combined qual / quant data

Use weakly or not structured information to extract qual / quant data

A MUSING pilot study – CRM in IT Services

- goal define KPIs to enable high responsiveness to service performance issues
 - ✓ specific scenario in IT services –
 - business events affecting intangibles with (often tangible) consequences
 - causal event hardware failure, network breakdown, software malfunction
 - affected intangibles customer capital, process capital
 - visible consequences customer claims, even lawsuits
- intangibles mediate the cause effect relationship in a non-deterministic way
 - extending conventional operational risk analysis

Specific MUSING Pilot Objectives

1st Intangibles Symposium Rutgers University September 2010

LUDWIG-MAXIMILIANS-UNIVERSITÄT I MU

Intangibles involved in IT Services CRM

intangibles related to process capital,

- in terms of the WICI taxonomy, risk management and service governance
 - wicijp:InternalControlsStructure
 - wicijp:InternalWarningSystemAndResponse

intangibles related to customer capital

wici-kpi:CustomerServiceCommunicationAndRelationships
 wici-kpi:ManagingCustomerSatisfaction
 wici-kpi:ManagingCustomerRetentionLoyaltyAndAdvocacy
 wici-kpi:ManagingCustomerRevenueGeneration

need assessments of these intangibles for proactive or protective action

Addressing Intangibles from operational data

operational event data

- log files
- human annotations, explanations
- too early to allow conclusions
- CRM data
 - call center transcripts, online forms, mails
 - first footprints of influences on intangibles, but unstructured data
- consequences data
 - claims, lawsuits
 - too late for proactive measures, but key to overall improvement on KPIs, again mostly unstructured

Data sources

The data sources of "fact" (**F**) and "consequences" (**C**):

<u>1. multiple losses</u>

F: central IT system logs, operator notes (ReIDB incl text)

C: claims and lawsuits against the Bank (ReIDB incl text)

2. opportunity loss

F: IT Dept. (MO provider) service logs, operator notes (ReIDB incl text)
C: staff reports, customer complaints (ReIDB incl text)

<u>3. near misses</u>

F: IT Server log records
(invalid login, connect attempts, attacks etc)
(ReIDB incl text)
C: risk profile obtained from 1. and 2.,

business process logs (various formats)

Information Extraction by Natural Language Processing

- Input short texts
 - e.g., failure comments, customer free form comments

Procedure

- pipeline of processing steps
 - tokenization
 - stop word elimination
 - matching against domain terminology
 - stemming (lemmatization)
 - document /inverted document term frequency extraction
 - topic analysis

Output – relevance vector of topics for text

generic topics

 topics are identified in an unsupervised way from co-occurrences of terms

methods e.g. latent semantic analysis

- based on singular value decomposition of suitable frequency / inverted document frequency matrix
- used in Apple's SpotLight application
- recently, this has been developed further, latent Dirichlet allocation
 - U Stanford Nat. Lang. Group Topic Modelling Tool

Ontologies – knowledge beyond topics

- An ontology is a formal representation of a conceptual system comprising
 - one or more taxonomies (concept hierarchies)
 - concept definitions by data and object (has-a) properties
 - related to entity relationship models, but based on logic – declarative knowledge representation
 - benefit can run inference engines to derive properties of a concept or an individual
 - can detect inconsistencies or apply rules to enforce requirements

Ontology based information extraction

- spot items of qual / quant information in texts, web pages etc
- match information against ontology class instances and their relationships
- populate ontologies repository
 - ✓ OWL web ontology language
- perform logical inferences
 - CROWL developed by DFKI Nat Lang Lab
- query results from ontologies
 - JOSEKI web service infrastructure for storing / querying ontology data

Application of Topic Analysis to Intangibles Monitoring

- Identify vocabularies
 - for loss event descriptions
 - ✓ for CRM textual data
- Use Topic Analysis to assess relevant descriptors for loss events / customer claims
 - ✓ cluster descriptors
 - what are key loss event groupings in the domain Bank transactional IT services
 - what are key customer complaint issues, e.g. denial of service for chips on customer cards

Topic Representation of Facts / Consequences Data in the Pilot

Cluster ID	Failure Topics
1	Check management
2	Contract management, printing activities
3	Hardware
4	Olap and data management
5	Data updating, Data flow, Transaction procedures
6	Corporate banking, remote banking, home banking Server Apps
7	Bancomat, POS, ATM

Cluster ID	Claim Topics
1	ATM-Bancomat withdrawal
2	Cheques management and fraud
3	Loan management
4	Bank account management
5	Bill and cash order management
6	Credit Card Usage
7	Mortgage management

Analysis of affected intangibles

"correlate" loss descriptions and claims by

- temporal proximity
- expertise on possible causal relationships
- (can use a Bayesian network to build a full probabilistic influence model)
- add a valuation to each loss event and claims cluster
 - prob. distribution of costs incurred
- $\Box \rightarrow$ the clue to affected intangibles
 - process capital a loss event triggers many costly claims
 - ✓ customer capital a claim can imply customer loss

Method for Risk Model Construction from Training Data Set

1st Intangibles Symposium Rutgers University September 2010

Statistical Processing on Training Data

Applying the Classifier -- Intangibles Monitoring and Assessment

- The MUSING pilot targeted the training phase of the risk classification system
 - deployment at Bank Monte dei Paschi
- Extending this work, we come to the usage phase of the resulting risk model, in particular focussing on intangibles monitoring
 - ✓ obtain early warnings
 - WICI: building an adequate internal controls structure
 - analyze log and CRM data for patterns indicating high risks
 - update the probability distributions of the model (retraining)

An example calculation for test data (using Mathematica 7)

Outlook – Extending the model with financial data

How to assemble a business service based on MUSING technologies

- Web-Apps for business / experts users
- Business layer needs to integrate
 - ✓ NLP modules (like GATE, U Sheffield)
 - statistical modules (like R scripts)
 - knowledge warehouse (ontology) querying and updating
 - provided in MUSING by DFKI and U Innsbruck
 - ✓ data access
 - dedicated services like EBR provided balance sheets in XBRL
 - crawling for company imprint pages, region documents
- Implementation
 - ✓ all services are web services w suitable partner links
 - ✓ all applications are WS-BPEL 2 processes (Glassfish 2.2 JBI Server)
 - ✓ this was used for the pilot on Multiple Losses
 - ✓ MUSING integration partner was MetaWare S.p.A. of Pisa, IT

Vision – the contextualized information warehouse architecture

- integration of weakly / unstructured info
- common dimensions language
 - ✓ interoperability with XBRL
- specific methods
 - ✓ document WH ✓ corporate WH

integrated analytics

Marcus Spies

Conclusions (part 1)

- generic approach to intangibles focussed management information / decision support systems (MIS, DSS)
 - focus on up-to-date monitoring and assessment of intangibles needed
 - Event-Condition-Action approach
 - integration of weakly or un-structured information
 - interoperability with XBRL (esp. emerging standards WICI and GRC-XML)
 - in middle to long term perspective, an integration with business rules processing will be needed

Conclusions (part 2)

- an operational risk modelling pilot demonstrates feasibility of the approach
 - including information extraction from operational data (textual comments, notes etc)
 - ✓ intangibles mediating cause effect relationships
 - we predict effects resulting in losses
 - reversing the signs, the method can be applied to gains, as well

• e.g. in analysis of collaborative networks infrastructures

 resulting KPIs and activity / risk controls assessments can be brought in line with XBRL WICI

