

Duplicate Records Detection and Prioritization: A Case Study for a U.S. County

By Andrea Rozario Of Rutgers, the State University of New Jersey for the 36th WCARS June 2, 2016 Sao Paulo, BR

Continuous Auditing

- Continuous auditing entails the real-time monitoring and analysis of the entire population of records (Vasarhelyi and Halper 1991)
- Premise of this methodology is based on the concept of audit- byexception where deviations (e.g. control variances) are flagged as alerts and forwarded to the responsible parties (e.g. management, internal auditors, business owners) for investigation
- There is an increasing trend to follow an audit-by-exception approach
- Important to maintain a high level of quality of data in order to rely on the results of such approach

Why is the detection of duplicate records important?

- Business and governmental entities generate a substantial amount of data every day
- This data is used to perform analyses that can support decision making:
 - Using prior year purchasing data as a baseline to create an expenditure budget
 - Assuring the quality of the CAFR (Comprehensive Annual Financial Report)
- Important to ensure the quality of the data that is generated by an entity's relational database
- Shortage of studies that address the problem of duplicate records in the governmental accounting literature
- CA literature is rich with studies that propose statistical and machine learning techniques to identify exceptions, but the results of duplicate records detection are usually too many (Dull et al., 2006; Kogan et al., 1999)

What is the issue with identifying too many duplicates?

Solution to duplicate record detection problem

• How can we devise a methodology to rank the detected duplicates in order to enable the human users to focus their attention on the more suspicious cases?

Duplicate records

Costly Problem

Causes:

- Different formats, structures or schema of databases
- Lack of a global or unique identifier
- Human factors (data entry, lack of constraints, intentional)

Detection Methods:

1. Exact matching:

Records are *identical*

- 2. <u>Fuzzy (near-identical) matching (Weis et.al., 2008)</u>:
 - Records have *similar* values for certain relevant fields
 - Causes: data entry errors, different value formats, etc.
 E.g. 10/21/10 vs. October 21, 2010
 - Classified as duplicates based on a threshold and some similarity criteria

Vendor Name	Address
J.B. Smith	1 Washington Park
J. Smith	1 Washington Park
John Smith	1 Washington Park Ave
John Smith	1 Washington Park Avenue

Duplicate Detection Process

Generalized framework (Weis & Neumann, 2005):

- Phase 1: Candidate definition (offline)
 - Determine which objects to compare
- Phase 2: Duplicate definition (offline)
 - Determine criteria (description + similarity measure) to use in order to consider actual duplicates
- Phase 3: Actual duplicate detection
 - Specifying how to detect duplicates candidates and find which ones are true duplicates

Record	Vendor Name	Address	Age	Phone
1	John Smith	1 Washington Park	32 yrs	973-123-4567
2	J.B. Smith	1 Washington Park	32 years	1-973-123-4567
3	J. Smith	1 Washington Park	32 years	(973)1234567
4	John Smith	1 Washington Park Ave	32 years	+1-973-123-4567
5	John Smith	1 Washington Park Avenue	32 yrs	+19731234567

7

Data

Data Description

- 1 file: (August 2011 June 2015)
- **Dataset:** information on payments to various vendors; 473,000 records, 230 variables

Software & Algorithm used

Excel (data cleaning and preparation)

IDEA (duplicates detection)

Algorithm: 3-way match (Payee + Invoice Date + Invoice Amount)

- Additional variable: Invoice number

Algorithms and Findings

Dataset

- (Date, Amount, Vendor) yielded 83,000 candidates
- (Date, Amount, Vendor, Invoice ID) yielded 8,000 candidates

GERS

Duplicate Candidates Prioritization

- Large numbers of candidates
- Use a set of criteria to differentiate (rank) between them
- Simply adding a new variable to the algorithm proved suboptimal

Proposed prioritization based on a Composite Score: $CS_i = \sum W_{iCr_i}$

Where CS_i is the Composite Score of the set of duplicate candidates i W_{iCr_i} is the weight of Criterion j when applied to the set of duplicate candidates *i*

Proposed set of criteria:

Materiality, missing values, count of similar candidates, frequency per user, frequency per vendor, duplicate invoice number

Prioritization Criteria

- **Materiality:** $W_{i_Materiality} = (Amt_i)/(\sum Amt_i)$
- Missing values: *W*_{*i*_MissValue} =

 $\begin{cases} 1/(\sum Count_i), if \text{ the set of duplicate candidates } i \text{ does not have missing values} \\ 0, Otherwise \end{cases}$

- Count of similar candidates: $W_{i_Count} = (Count_i)/(\sum Count_i)$
- Frequency per user: $W_{i_FreqUser} = (Count_{U_i})/(\sum Count_i)$
- Frequency per vendor: $W_{i_FreqVndr} = (Count_{V_i})/(\sum Count_i)$
- Duplicate invoice number: $W_{i_InvID} =$

 $\begin{cases} 1/(\sum Count_i), \text{ if the Invoice ID is the same for the candidates} \\ 0, \text{ Otherwise} \end{cases}$

Prioritization Example

Record #	Vendor ID	Invoice #	Date	\$ Amount	Created by
1001	619505	1241225	5/11/2009	268.55	JDoe
2034	619505	1241225	5/11/2009	268.55	JDoe
9418	619505	1241225	5/11/2009	268.55	JDoe
7430	203339		7/7/2009	4119.5	JSmith
6159	203339		7/7/2009	4119.5	JSmith
8332	552751	1325148	10/5/2009	80.35	JDoe
4723	552751	1279869	10/5/2009	80.35	JDoe

For Record 1001 we calculate the following weights:

- $W_{1001_Materiality} = (Amt_{1001})/(\sum Amt_i) = 268.55/9205.35 = 0.0292$
- $W_{1001_MissValue} = 1/(\sum Count_i) = 1/7 = 0.1429$ (as there are no missing values causing it to be a duplicate candidate)
- $W_{1001_Count} = (Count_{1001}) / (\sum Count_i) = 3/7 = 0.4286$
- $W_{1001_FreqUser} = (Count_{U_i i}) / (\sum Count_i) = 5/7 = 0.7143$
- $W_{1001_FreqVndr} = (Count_{V_ji})/(\sum Count_i) = 3/7 = 0.4286$
- $W_{1001 InvID} = 1/(\sum Count_i) = 1/7 = 0.1429$ (Invoice ID are the same)

Ranking of the example

Composite Scores of all the duplicate candidates in the example:

Record #	Score - Materiality	Score - Missing Values	Score - Count	Score - Frequency by User	Score - Frequency by Vendor	Score - Invoice ID	Composite Score	Rank
1001	0.0292	0.1429	0.4286	0.7143	0.4286	0.1429	1.8863	1
2034	0.0292	0.1429	0.4286	0.7143	0.4286	0.1429	1.8863	1
9418	0.0292	0.1429	0.4286	0.7143	0.4286	0.1429	1.8863	1
7430	0.4475	0.0000	0.2857	0.2857	0.5714	0.0000	1.5904	4
6159	0.4475	0.0000	0.2857	0.2857	0.5714	0.0000	1.5904	4
8332	0.0087	0.1429	0.2857	0.7143	0.5714	0.0000	1.7230	6
4723	0.0087	0.1429	0.2857	0.7143	0.5714	0.0000	1.7230	6

Conclusion

- Given the recent emphasis on transparency and accountability of government funds, it is important to ensure the data is accurate and reliable
- In this study, we detected duplicate candidates for a U.S. county and proposed a prioritization framework to rank these candidates
- Next step: Apply the prioritization framework to the government data and refine the framework as we obtain feedback

