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Abstract

This paper develops Vovk’s notion of game-theoretic quadratic varia-
tion. In particular, it considers different constructions of quadratic varia-
tion and the connection between them, as well as relative quadratic vari-
ation and its linkage to the absolute quadratic variation. No probability
assumptions are made.

1 Introduction

Continuous-time finance is usually studied in the measure-theoretic framework.
Vovk and Shafer ([2], [10], [9]) studied it in the game-theoretical setting using
non-standard analysis, but this was only partly successful. The theory with-
out non-standard analysis was developed by Vovk in [4] and [7] assuming that
quadratic variation is imposed on the game.

The Japanese school of game-theoretic probability proposed an alternative
framework for continuous time stochastic processes in [3] in which quadratic
variation emerges from market efficiency. This approach has been further de-
veloped by Vovk ([5], [6] and [8]). This study develops their approach in a way
that can be used in mathematical finance.

1.1 Game-theoretic probability in finance in discrete time

In their 2001 book, Shafer and Vovk study games for pricing European and
American options as well as for diffusion processes in discrete time. Each game is
a perfect-information game, in which every move of every player is immediately
revealed to other players. The players in these games are Market, Investor,
Skeptic, Reality, Forecaster and Speculator.

Market is believed to be efficient to certain degree, in the sense, that Spec-
ulator is unlikely to multiply his capital by a large factor. This idea is used to
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assign game-theoretic probabilities to events. For example, an event is said to
happen almost surely if Speculator has a strategy that multiplies his capital by
an infinite factor if the event fails. Equipped with this notion of contingency,
Shafer and Vovk provide their own versions of established results in finance.
The major advantage of this approach is that it does not assume any probabil-
ity measure, which is often considered to be unrealistic.

In [10] (published as [11]) Vovk and Shafer study the game-theoretical capital
asset price model (CAPM) in discrete time. In particular, they consider the
following game

Basic Capital Asset Pricing Game (Basic CAPG)

Players: Investor, Market, Speculator

Parameters:

Natural number K (number of non-index securities in the market)
Natural number N (number of rounds or trading period)
Real number α satisfying 0 < α ≤ 1 (significance level)

Protocol:

G0 := 1.
H0 := 1.
M0 := 1.
FOR n = 1, 2, . . . , N :

Investor selects gn ∈ RK+1 such that
∑K
k=0 g

k
n = 1.

Speculator selects hn ∈ RK+1 such that
∑K
k=0 h

k
n = 1.

Market selects xn ∈ (−1,∞)K+1.

Gn := Gn−1
∑K
k=0 g

k
n(1 + xkn).

Hn := Gn−1
∑K
k=0 h

k
n(1 + xkn).

Mn :=Mn−1(1 + x0n).

Here x0n is the return on market index at round n, xkn is the return on security
k in round n, Mn is the capital at the end of round n resulting from investing
capital of size one in market at the beginning of the game, Gn is the capital of
Investor at the end of round n and Hn is the capital of Speculator at the end
of round n. The only remaining notions are

sn :=
Gn − Gn−1
Gn−1

, mn := x0n.

Let

µs :=
1

T

N∑
n=1

sn, µm :=
1

T

N∑
n=1

mn, (1)

σ2
m :=

1

T

N∑
n=1

s2n, σsm :=
1

T

N∑
n=1

snmn, (2)
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and let A be the event that µs approximates µm − σ2
m + σsm. Vovk and Shafer

showed that A happens almost surely. Moreover, the gave explicit bounds to
justify this approximation. Also, it is interesting to note that the quantities
defined in (1) are of empirical nature.

1.2 The accomplishments using non-standard analysis

Non-standard analysis operates with such notions as infinitely large and in-
finitesimal, which intuitively mean “very large” and “very small”. To generalize
the results of game-theoretic probability in finance in discrete time, Shafer and
Vovk divide an interval [0, T ] into an infinitely large number N of steps of equal
infinitesimal length dt := T/N . They consider a game of N rounds with the
amount of time between successive rounds equal to dt. By the transfer principle
some non-standard theorems can be deduced directly from the corresponding
standard theorems. Therefore, the results of the discrete framework readily
generalize to their continuous time counterparts.

Shafer and Vovk in [2] consider games for pricing options and for diffusion
processes. Among other results, a variant of the Black-Scholes formula is de-
duced.

In [9] Vovk and Shafer used the same setting with non-standard analysis in
the following game, which is a continuous version of the game described in §1.1

Basic Capital Asset Pricing Protocol

Players: Investor, Market, Speculator

Parameters:

Natural number K (number of non-index securities in the market)
Infinite natural number N (number of rounds or trading period)

Protocol:

G0 := 1.
H0 := 1.
M0 := 1.
FOR n = 1, 2, . . . , N :

Investor selects gn ∈ RK+1 such that
∑K
k=0 g

k
n = 1.

Speculator selects hn ∈ RK+1 such that
∑K
k=0 h

k
n = 1.

Market selects xn ∈ (−1,∞)K+1.

Gn := Gn−1
∑K
k=0 g

k
n(1 + xkn).

Hn := Gn−1
∑K
k=0 h

k
n(1 + xkn).

Mn :=Mn−1(1 + x0n).

Restrictions:

Market and investor are required to make σ2
s and σ2

m finite and to make maxn |sn|
and maxn |mn| infinitesimal.

For this game it was proven that for any ε > 0

|µs − µm + σ2
s − σsm| < ε(1 + σ2

s−m) (3)
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almost surely, where

σ2
s−m :=

1

T

N∑
n=1

(sn −mn)2.

This is a game-theoretic continuous analogue of the CAPM in the standard
financial theory. The σ2

s−m/2 is called a theoretical performance deficit and the
following result for it was obtained: for any ε > 0

|λs − λm +
1

2
σ2
s−m| < ε(1 + σ2

s−m) (4)

almost surely.
Although non-standard analysis seems to be a natural choice in the game-

theoretical framework, one may find it awkward and, thus, unsatisfactory since
its machinery highly depends on the selection of the ultrafilter, a special family
of subsets of N. It cannot be chosen uniquely and there is no constructive version
of it.

1.3 Vovk’s recent work on continuous time stochastic pro-
cesses

Inspired by [3], Vovk in [5], [6] and [8] develops the theory of continuous time
processes in the game-theoretic probability framework without non-standard
analysis. This theory relies only on a trading protocol.

Though the formal picture will be given later in Section 2.1, it would be
beneficial to provide some insight into the idea behind it. We consider a game,
where Reality (market) produces some continuous function ω : [0,∞)→ R. For
each time t ∈ [0,∞), the value of ω(t) represents the price of the financial asset
at that time. Skeptic chooses a trading strategy prior to Reality’s choice of ω.
Skeptic’s trading strategy is a countable sum of elementary trading strategies.
An elementary trading strategy is an initial capital together with a rule which
says how much to bet at specific times, which depend on the available infor-
mation about ω. As shown by Vovk, this framework gives enough flexibility to
define upper and lower probabilities and to make assessments about continuous
time processes.

In [5] it was shown that ω has certain properties of Brownian motion includ-
ing the absence of isolated zeros and the absence of points of strict increase or
decrease. The main result of [6] is that almost surely

sup
κ

n∑
i=1

|ω(ti)− ω(ti−1)|2 ,

is finite (here n ranges over all positive integers and κ over all subdivisions
0 = t0 < t1 < · · · < tn = T of the interval [0, T ]), and that the analogous
quantity when the exponent 2 is replaced by a smaller number is not finite,
when ω is constant.
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The further development of the theory in [8] shows that the Wiener measure,
a measure generated by Brownian motion, emerges naturally in this setting. Its
main result already contains the results from [5] and [6] and is presented in two
ways, abstract and constructive, which provides different perspectives on the
matter.

1.4 The need to develop quadratic variation in Vovk’s
framework.

Although quadratic variation was studied in [8], we still need to develop it fur-
ther. It is exactly the objective of this paper. In the following sections we
review Vovk’s constructive version of quadratic variation, discuss its construc-
tion in both Lebesque and Riemannian sense, prove the existence of relative
quadratic variation and show how it is connected to its absolute counterpart.
These are the necessary steps in the further study of the capital asset price
model in Vovk’s game-theoretical probability framework in continuous time.

Sections 2 and 3 basically repeats some results of Vovk’s 2009 paper [8].
Sections 4 and 5 contain the actual results of this work and Section 6 concludes
it.

2 Game setting, upper probabilities and game-
theoretical version Hoeffding’s inequality

In this section we describe the game, define process, event, trading strategy,
upper and lower probabilities, and also present a useful version of Hoeffding’s
inequality as developed by Vovk in [8].

2.1 Vovk’s framework

We consider a game between two players, Reality (a financial market) and Skep-
tic (a trader), over the time interval [0,∞). First Skeptic chooses his trading
strategy and then Reality chooses a continuous function ω : [0,∞) → R (the
price process of a security).

We define Ω to be the set of all continuous functions ω : [0,∞)→ R. For each
t ∈ [0,∞), let Ft be the smallest σ-algebra that makes all functions ω 7→ ω(s),
s ∈ [0, t], measurable. A process S is a family of functions St : Ω → R,
t ∈ [0,∞), each St being Ft-measurable; its sample paths are the functions t 7→
St(ω). An event is an element of the σ-algebra F∞ := ∨tFt (also denoted by F).
Stopping times τ : Ω→ [0,∞] w.r. to the filtration (Ft) and the corresponding
σ-algebras Fτ are defined as usual; ω(τ(ω)) and Sτ(ω)(ω) will be simplified to
ω(τ) and Sτ (ω), respectively (occasionally, the argument ω will be omitted in
other cases as well).

An elementary trading strategy G consists of an increasing sequence of stop-
ping times 0 ≤ τ1 ≤ τ2 ≤ . . . such that limn→∞ τn(ω) =∞ for each ω ∈ Ω, and,
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of a sequence of bounded Fτn -measurable functions hn, n = 1, 2, . . . . To such a
G and an initial capital c ∈ R corresponds the elementary capital process

K
G,c
t (ω) := c+

∞∑
n=1

hn(ω)
(
ω(τn+1 ∧ t)− ω(τn ∧ t)

)
, t ∈ [0,∞), (5)

Note, that the value of the sum is finite for each t. The value hn(ω) will be

called Skeptic’s bet (or stake) at time τn, and K
G,c
t (ω) will be called Skeptic’s

capital at time t.
A positive continuous capital process is any process S that can be represented

in the form

St(ω) :=

∞∑
n=1

K
Gn,cn
t (ω), (6)

where the elementary capital processes are K
Gn,cn
t (ω) are required to be non-

negative, for all t and ω, and the positive series
∑∞
n=1 cn converges. The sum

(6) is always non-negative and allowed to be infinite. Since K
Gn,cn
0 (ω) = cn

does not depend on ω, S0(ω) =
∑∞
n=1 cn also does not depend on ω and will

sometimes be abbreviated to S0. Let S be the set of all positive continuous
capital processes on Ω. Sometimes we will refer to a positive continuous capital
process simply as a trading strategy.

Any real-valued function on Ω is called a variable. We define an upper price
of a bounded variable ξ as

E(ξ) := inf
{
S0

∣∣ S ∈ S : ∀ω ∈ Ω lim inf
t→∞

St(ω) ≥ ξ(ω)
}
. (7)

Therefore, an upper price of ξ is the least starting capital (here we disregard
the infimum) needed to achieve at least ξ(ω) for any ω ∈ Ω.

For any set E ⊆ Ω the upper price of the indicator function of E, 1E , will
be called the upper probability of E and will be denoted as P(E). That is

P(E) := inf
{
S0

∣∣ S ∈ S : ∀ω ∈ Ω lim inf
t→∞

St(ω) ≥ 1E(ω)
}
, (8)

Intuitively, an event with lower probability is one that you can bet on at lower
cost - i.e., for which you put up less money initially in order to get one dollar if
the event happens.

We say that E ⊆ Ω is null if P(E) = 0. Correspondingly, a set E ⊆ Ω is
almost certain or almost sure if P(Ec) = 0, where Ec := Ω \ E stands for the
complement of E. A property of ω ∈ Ω will be said to hold almost surely or
almost surely, or for almost all ω, if the set of ω where it fails is null.

The lower probability is defined as:

P(E) := 1− P(Ec).
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2.2 Hoeffding’s inequality

In this section we provide an important result by Vovk from [8]. This is a game-
theoretic version of Hoeffding’s inequality (the original version is in [1]). It will
be useful in the later proof of existence of quadratic variation.

Game of forecasting bounded variables

Players: Skeptic, Forecaster, Reality

Protocol:
Skeptic announces K0 ∈ R.
FOR n = 1, 2, . . . :

Forecaster announces interval [an, bn] ⊆ R
and number µn ∈ (an, bn).

Skeptic announces Mn ∈ R.
Reality announces xn ∈ [an, bn].
Skeptic announces Kn ≤ Kn−1 +Mn(xn − µn).

This is a perfect-information game: each player can see the other players’ moves
before making his or hers. Each round n of the game begins with Forecaster
outputting an interval [an, bn] which, he believes, will capture the actual obser-
vation xn chosen by Reality. He also gives a guess µn for xn. We can regard
µn as the price of a ticket which pays xn after Reality’s move becomes known.
Skeptic can purchase any number Mn (including non-positive) of such tickets.
Skeptic can choose his initial capital K0 and is allowed to throw away part of
his money at the end of each round.

We call any real-valued function defined on all finite sequences
(a1, b1, µ1, x1, . . . , aN , bN , µN , xN ), N = 0, 1, . . ., of Forecaster’s and Reality’s
moves a process . Fixing a strategy for Skeptic, will make Skeptic’s capital KN ,
N = 0, 1, . . ., a function of Forecaster’s and Reality’s previous moves; in other
words, Skeptic’s capital becomes a process. The processes that can be obtained
this way are called discrete supercapital processes.

Theorem 1. For any h ∈ R, the process

N∏
n=1

exp

(
h(xn − µn)− h2

8
(bn − an)2

)
is a supercapital process.

3 Quadratic variation.

In this section we study quadratic variation. The proof of Lemma 1 is a slightly
rewritten version of Vovk’s original proof from [8].
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For n = 0, 1, 2..., let Dn := {l2−n | l ∈ Z} and define a sequence of stopping
times Tnk , k = −1, 0, 1, 2, . . ., inductively by Tn−1 := 0,

Tn0 (ω) := inf {t ≥ 0 | ω(t) ∈ Dn} ,
Tnk (ω) := inf

{
t ≥ Tnk−1 | ω(t) ∈ Dn & ω(t) 6= ω(Tnk−1)

}
, k = 1, 2, . . .

where inf ∅ :=∞.

Figure 1: Stopping times for a piecewise linear function ω.

For each t ∈ [0,∞) and ω ∈ Ω, define

Ant (ω) :=

∞∑
k=0

(
ω(Tnk ∧ t)− ω(Tnk−1 ∧ t)

)2
, n = 0, 1, 2, . . . . (9)

Lemma 1. For each T > 0, it is almost certain that t ∈ [0, T ] 7→ Ant is a
Cauchy sequence of functions in C[0, T ].

Proof. Fix T > 0 and fix temporarily n ∈ {1, 2, . . .}. Let κ ∈ {0, 1} be such
that Tn−10 = Tnκ , i.e. it is the number of times Ant increased on the interval
[0, Tn−10 ). Note, that for any k = 1, 2, . . .

ω(Tnk )− ω(Tnk−1) :=

{
2−n if ω(Tnk ) > ω(Tnk−1)

−2−n otherwise,

For each k = 1, 2, . . ., let

ξk :=

{
1 if ω(Tnκ+2k) = ω(Tnκ+2k−2)

−1 otherwise.

If ω were generated by Brownian motion, ξk would be a random variable taking
value j, j ∈ {1,−1}, with probability 1/2 and its expected value would be 0.
This remains true in our setting in the sense that the game-theoretical expected
value of ξk at time Tnκ+2k−2 is 0. To see this consider the following elementary
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trading strategy that, when started with initial capital 0 at time Tnκ+2k−2, ends
with ξk at time Tnκ+2k (given both times are finite): at time Tnκ+2k−1 bet −2n if
ω(Tnκ+2k−1) > ω(Tnκ+2k−2) and bet 2n otherwise. That is

ξk =

κ+2k−1∑
r=κ+2k−2

hr(ω)
(
ω(Tnr+1)− ω(Tnr )

)
, (10)

where hκ+2k−2(ω) = 0 and

hκ+2k−1(ω) :=

{
−2n if ω(Tnκ+2k−1) > ω(Tnκ+2k−2)

2n otherwise.

Let ηk denote the increment of the process Ant −An−1t over the time interval
[Tnκ+2k−2, T

n
κ+2k]. That is

ηk := AnTnκ+2k
−An−1Tnκ+2k

−
(
AnTnκ+2k−2

−An−1Tnκ+2k−2

)
= AnTnκ+2k

−AnTnκ+2k−2
−
(
An−1Tnκ+2k

−An−1Tnκ+2k−2

)
.

We want to show that ηk ∈ {−2−2n+1, 2−2n+1} and its game-theoretical ex-
pected value at time Tnκ+2k−2 is equal to zero.

Since

AnTnκ+2k
−AnTnκ+2k−2

=
(
ω(Tnκ+2k−1)− ω(Tnκ+2k−2)

)2
+
(
ω(Tnκ+2k−1)− ω(Tnκ+2k−2)

)2
= (2−n)2 + (2−n)2 = 2−2n+1.

and

An−1Tnκ+2k
−An−1Tnκ+2k−2

=
(
ω(Tnκ+2k)− ω(Tnκ+2k−2)

)2
1{ξk=−1}

= 2−2n+21{ξk=−1}.

we have
ηk = 2−2n+1 − 2−2n+21{ξk=−1} = 2−2n+1ξk.

Now, we can apply the game-theoretic version of Hoeffding’s inequality to
ηk: for any constant λ ∈ R there exists a positive supercapital process S with
S0 = 1 such that, for all K = 0, 1, 2, . . .,

STnκ+2K
=

K∏
k=1

exp
(
ληk − 2−4n+1λ2

)
. (11)

The Hoeffding’s inequality guarantees that there is a capital process S, which
is positive at Tnκ+2K , K = 0, 1, . . ., but we also want to make sure that it is
positive for all t ∈ (Tnκ+2k+2, T

n
κ+2k) and for all k = 1, 2, . . . ,K. The following
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expression holds and follows directly from the proof of Hoeffding’s inequality in
[8]

exp
(
ληk − 2−4n+1λ2

)
− 1 ≤ ηk

eλ2
−2n+1 − eλ−2−2n+1

2−2n+2
exp

(
−2−4n+1λ2

)
. (12)

We can rewrite it in terms of ξ

exp
(
λ2−2n+1ξk − 2−4n+1λ2

)
− 1 ≤ ξk

eλ2
−2n+1 − eλ−2−2n+1

2
exp

(
−2−4n+1λ2

)
.

Furthermore, recalling (10) we obtain

exp

(
λ2−2n+1

κ+2k−1∑
r=κ+2k−2

hr(ω)
(
ω(Tnr+1)− ω(Tnr )

)
− 2−4n+1λ2

)
− 1

≤ eλ2
−2n+1 − eλ−2−2n+1

2
exp

(
−2−4n+1λ2

) κ+2k−1∑
r=κ+2k−2

hr(ω)
(
ω(Tnr+1)− ω(Tnr )

)
.

(13)

Denote

Hr(ω) :=
eλ2

−2n+1 − eλ−2−2n+1

2
exp

(
−2−4n+1λ2

)
hr(ω).

Plugging it into (13) yields

exp

(
λ2−2n+1

κ+2k−1∑
r=κ+2k−2

hr(ω)
(
ω(Tnr+1)− ω(Tnr )

)
− 2−4n+1λ2

)
− 1

≤
κ+2k−1∑
r=κ+2k−2

Hr(ω)
(
ω(Tnr+1)− ω(Tnr )

)
. (14)

Both sides of (14) are equal to the corresponding sides of (12). Thus, a strategy
defined by betting Hκ+2k−2(ω) (which is equal to zero) at time Tnκ+2k−2 and

Hκ+2k−1(ω) at time Tnκ+2k−1 will produce at least exp
(
ληk − 2−4n+1λ2

)
at time

Tnκ+2k given that the initial capital at time Tnκ+2k−2 is of size 1.
For all t ∈ [Tnκ+2k−2, T

n
κ+2k] define.

δk(t) := 2−2n+1
κ+2k−1∑
r=κ+2k−2

hr(ω)
(
ω(Tnr+1 ∧ t)− ω(Tnr ∧ t)

)
Since ω is continuous, δk(t) ∈ [−2−2n+1, 2−2n+1]. Therefore, the inequality (12)
with δk(t) in place of ηk is true. A consequence of this is the following inequality
(an analogue of (14))

exp
(
λ2−2n+1δk(t)− 2−4n+1λ2

)
− 1

≤
κ+2k−1∑
r=κ+2k−2

Hr(ω)
(
ω(Tnr+1 ∧ t)− ω(Tnr ∧ t)

)
,

(15)

10



which shows that a capital process S defined by strategy discussed above will
be positive at any t ∈ [Tnκ+2k−2, T

n
κ+2k] for all k = 1, 2, . . . ,K.

The sum of (11) over n = 1, 2, . . . with weights 2−nα/2, α > 0, will also be
a positive supercapital process, and with lower probability at least 1 − α/2 it
will not exceed 2n2/α. Therefore, none of these processes in this sum will ever
exceed 2n2/α. The inequality

K∏
k=1

exp
(
ληk − 2−4n+1λ2

)
≤ 2n

2

α
≤ en 2

α

can be equivalently rewritten as

λ

K∑
k=1

ηk ≤ Kλ22−4n+1 + n+ ln
2

α
. (16)

Plugging in the identities

K =
AnTnκ+2K

−AnTnκ
2−2n+1

, (17)

K∑
k=1

ηk =
(
AnTnκ+2K

−AnTnκ
)
−
(
An−1Tnκ+2K

−An−1Tnκ

)
,

and taking λ := 2n, we can transform (16) to(
AnTnκ+2K

−AnTnκ
)
−
(
An−1Tnκ+2K

−An−1Tnκ

)
≤ 2−n

(
AnTnκ+2K

−AnTnκ
)

+
n+ ln 2

α

2n
, (18)

which implies

AnTnκ+2K
−An−1Tnκ+2K

≤ 2−nAnTnκ+2K
+ 2−2n+1 +

n+ ln 2
α

2n
. (19)

This is true for any K = 0, 1, 2, . . .; choosing the largest K such that Tnκ+2K ≤ t,
we obtain

Ant −An−1t ≤ 2−nAnt + 2−2n+2 +
n+ ln 2

α

2n
, (20)

for any t ∈ [0,∞). The case t < Tnκ is considered separately by finding the
maximum n∗ ∈ N such that t > Tn∗−10 and applying the same reasoning for

An
∗

t −An
∗−1
t ; if there is no such n∗, then ω is constant and Ant = An−1t = 0 for

all n ∈ N and all t ∈ [0,∞).
Proceeding in the same way but taking λ := −2n, we obtain(
AnTnκ+2K

−AnTnκ
)
−
(
An−1Tnκ+2K

−An−1Tnκ

)
≥ −2−n

(
AnTnκ+2K

−AnTnκ
)
−
n+ ln 2

α

2n

instead of (18) and

AnTnκ+2K
−An−1Tnκ+2K

≥ −2−nAnTnκ+2K
− 2−2n+1 −

n+ ln 2
α

2n
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instead of (19), which gives

Ant −An−1t ≥ −2−nAnt − 2−2n+2 −
n+ ln 2

α

2n
(21)

instead of (20). The consequence of the inequalities (20) and (21) is

|Ant −An−1t | ≤ 2−nAnt + 2−2n+2 +
n+ ln 2

α

2n
, (22)

which holds with lower probability at least 1− α.
To prove the statement of the lemma it remains to show that the sequence

{Ant }n≥1 is bounded. Define a new sequence Bn, n = 0, 1, 2, . . ., as follows:
B0 := A0

t and Bn, n = 1, 2, . . ., are defined inductively by

Bn :=
1

1− 2−n

(
Bn−1 + 2−2n+2 +

n+ ln 2
α

2n

)
(23)

(notice that this is equivalent to (20) with Bn in place of Ant and = in place of
≤). As Ant ≤ Bn for all n, it suffices to prove that Bn is bounded. If it is not,
BN ≥ 1 for some N . By (23), Bn ≥ 1 for all n ≥ N . Therefore, again by (23),

Bn ≤ Bn−1 1

1− 2−n

(
1 + 2−2n+2 +

n+ ln 2
α

2n

)
, n > N,

and the boundedness of the sequence Bn follows from BN <∞ and

∞∏
n=N+1

1

1− 2−n

(
1 + 2−2n+2 +

n+ ln 2
α

2n

)
<∞.

Thus, the sequence {Ant }n≥1 is bounded, and from (22) it follows that:∣∣Ant −An−1t

∣∣ ≤ O(n/2n)

holds with lower probability at least 1− α. Setting α→ 0 finishes the proof.

Let Ω be equipped with the metric

ρ(ω1, ω2) :=

∞∑
d=1

2−d sup
t∈[0,2d]

(|ω1(t)− ω2(t)| ∧ 1) (24)

(and the corresponding topology and Borel σ-algebra, the latter coinciding with
F). This makes it a complete and separable metric space. Therefore, Lemma 1
yields

Corollary 1. It is almost certain that the sequence of functions t ∈ [0,∞) 7→ Ant
converges in Ω.

For every ω ∈ Ω the limn→∞Ant (ω) (given that it exists) will be called
quadratic variation of ω.

12



4 Riemannian quadratic variation

In the previous section we studied

Ant (ω) :=

∞∑
k=0

(
ω(Tnk ∧ t)− ω(Tnk−1 ∧ t)

)2
, n = 0, 1, 2, . . . . (25)

The function Ant (ω) is positive and it jumps at t = Tnk by the amount(
ω(Tnk )− ω(Tnk−1)

)2
, for k = 0, 1, 2, · · · . Since Ant (ω) increases every time ω

hits a vertical grid we may call At(ω) the Lebesgue quadratic variation of ω,
given that it exists. Now, set the

RAnt (ω) :=

∞∑
k=1

(
ω(k2−n ∧ t)− ω((k − 1)2−n ∧ t)

)2
, n = 0, 1, 2, . . . . (26)

This function resembles Ant (ω), but it increases at time points t = k2−n, k =

1, 2, · · · by (ω(k2−n)− ω((k − 1)2−n))
2
. The function RAnt accumulates every

time ω hits a horizontal grid (see Figure 2). This justifies the following: if the
limn→∞

RAnt (ω) exists we call it the Riemannian quadratic variation of ω and
denote it as RAt(ω).

We would like to know whether RAnt (ω) converges to a limit.

Lemma 2. For any ω in the set

{ω ∈ Ω | ω is strictly monotone and ∃c ∈ R+,∀n ∈ N :

min
k=1,...,dT2−ne

∣∣ω((2k − 1)2−n)− ω((2k − 2)2n)
∣∣ > c2−n/2} (27)

the limn→∞
RAnt (ω) does not exists for any t ∈ [0, T ].

Proof. Fix t ∈ [0, T ] and n ∈ N. Let τ := bt2−n+1c. Without the loss of
generality, assume that bt2−n+1c = bt2−nc (if this is not true we will have an
additional term in (28), (29) and (30) which tends to 0 as n→∞). Consider

RAn−1τ (ω)− RAnτ (ω) =

τ2n−1∑
k=1

[(
ω(k2−n+1)− ω((k − 1)2−n+1)

)2
−
(
ω(k2−n+1)− ω((2k − 1)2−n)

)2 − (ω((2k − 1)2−n)− ω((k − 1)2−n+1)
)2]

=

τ2n−1∑
k=1

2
(
ω((2k − 1)2n)− ω((k − 1)2−n+1)

) (
ω(k2−n+1)− ω((2k − 1)2−n)

)
=

τ2n−1∑
k=1

2
(
ω((2k − 1)2n)− ω((2k − 2)2−n)

) (
ω(2k2−n)− ω((2k − 1)2−n)

)
(28)

13



(a) Lebsgue

(b) Riemannian

Figure 2: Different constructions of quadratic variation.

The monotonicity of ω implies∣∣RAn−1τ (ω)− RAnτ (ω)
∣∣

= 2

τ2n−1∑
k=1

∣∣(ω((2k − 1)2n)− ω((2k − 2)2−n)
) (
ω(2k2−n)− ω((2k − 1)2−n)

)∣∣
= 2

τ2n−1∑
k=1

∣∣ω((2k − 1)2n)− ω((2k − 2)2−n)
∣∣ ∣∣ω(2k2−n)− ω((2k − 1)2−n)

∣∣
≥ τ2n min

k=1,...,dT2−ne

∣∣ω((2k − 1)2−n)− ω((2k − 2)2n)
∣∣2 . (29)

From (27) we obtain ∣∣RAn−1τ (ω)− RAnτ (ω)
∣∣ ≥ τc. (30)

14



From the definition of τ we have∣∣RAn−1t (ω)− RAnt (ω)
∣∣ ≥ τc. (31)

This holds for any n ∈ N. Hence {RAnt (ω)}n≥1 is not a Cauchy sequence, and,
thus, does not have a limit.

Although, it is not true that limn→∞
RAnt (ω) exists for all ω ∈ Ω, we still

can define a class of continuous functions for which RAnt (ω) converges.
For any ω ∈ C[0, T ], the function

mω(∆) := sup{|ω(t1)− ω(t2)| : (t1, t2 ∈ [0, T ]) ∧ |t1 − t2| ≤ ∆} (32)

is called the modulus of continuity of ω.

Lemma 3. For any ω ∈ C[0, T ] such that

mω(∆) = O(∆) as ∆→ 0 (33)

RAt(ω) exists for any t ∈ [0, T ].

Proof. Fix t ∈ [0, T ] and n ∈ N. Again, let τ := bt2−n+1c and without the
loss of generality, suppose that bt2−n+1c = bt2−nc (if not, then there will have
additional an term in (34), (35) and (36) which tends to 0 as n→∞).

Recall from (28) that

RAn−1τ (ω)− RAnτ (ω)

=

τ2n−1∑
k=1

2
(
ω((2k − 1)2n)− ω((2k − 2)2−n)

) (
ω(2k2−n)− ω((2k − 1)2−n)

)
(34)

From (33) we have

RAn−1τ (ω)− RAnτ (ω)

≥ −
τ2n−1∑
k=1

2
∣∣ω((2k − 1)2−n)− ω((2k − 2)2−n)

∣∣ ∣∣ω(2k2−n)− ω((2k − 1)2−n)
∣∣

≥ −τ2nO(2−n)O(2−n) = −O(2−n). (35)

Similarly, we can show that

RAn−1τ (ω)− RAnτ (ω)

≤
τ2n−1∑
k=1

2
∣∣ω((2k − 1)2−n)− ω((2k − 2)2−n)

∣∣ ∣∣ω(2k2−n)− ω((2k − 1)2−n)
∣∣

≤ O(2−n). (36)
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From the way we defined τ and from (35) and (36), we have

|RAnt (ω)− RAn−1t (ω)| ≤ O(2−n). (37)

Therefore, {RAnt (ω)}n≥1 is a Cauchy sequence and, thus, has a limit.

Lemma 4. Under the conditions of the previous lemma

lim
n→∞

RAnt = lim
n→∞

Ant

almost surely.

Proof. Fix t ∈ [0, T ] and fix n ∈ N. Let ω be such that At exists (it happens
almost surely) and let K be the largest natural number such that TnK ≤ t.

Define

qn := min{z ∈ N | ∀k ∈ {0, 1, . . . ,K} ∃l ∈ N : Tnk ≤ l2−z ≤ Tnk−1} (38)

From this definition it follows that

K ≤ t2qn . (39)

Since {RAqnt }n≥1 is a subsequence of {RAnt }n≥1 we have

lim
n→∞

RAnt = lim
n→∞

RAqnt (40)

For each k = 0, . . . ,K, let τnk ∈ {l2−qn | l ∈ N} be such that

Tnk − τnk = min
t∈{l2−qn |l∈N}

{Tnk − t | Tnk − t ≥ 0}

and
enk := Tnk − τnk .

Note that enk > 0 and

ω(τnk ) = ω(Tnk − enk ) = ω(Tnk ) + ω(Tnk − enk )− ω(Tnk ).

By the statement of the lemma

|ω(Tnk − enk )− ω(Tnk )| = O(enk ) ≤ O(2−qn).

Hence
ω(Tnk )−O(2−qn) ≤ ω(τnk ) ≤ ω(Tnk ) +O(2−qn). (41)

Consider

Ant −
RAqnt =

K∑
k=1

(
ω(Tnk )− ω(Tnk−1)

)2 − bt2qnc∑
k=1

(
ω(k2−qn)− ω((k − 1)2−qn)

)2
≤

K∑
k=1

(
ω(Tnk )− ω(Tnk−1)

)2 − K∑
k=1

(
ω(τnk )− ω(τnk−1)

)2
(42)
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It follows from (41) that

Ant −
RAqnt

≤
K∑
k=1

(
ω(Tnk )− ω(Tnk−1)

)2 − K∑
k=1

(
ω(Tnk )− ω(Tnk−1) + 2O(2−qn)

)2
=

K∑
k=1

(
ω(Tnk )− ω(Tnk−1)

)2 − K∑
k=1

(
ω(Tnk )− ω(Tnk−1)

)2
+ 2O(2−2qn+2)

K∑
k=1

(
ω(Tnk )− ω(Tnk−1)

)
+KO(2−4qn+4)

= O(2−2qn+3) (ω(TnK)− ω(Tn0 )) +KO(2−4qn+4). (43)

By (39) we get

Ant −
RAqnt ≤ O(2−2qn+3) (ω(TnK)− ω(Tn0 )) + tO(2−3qn+4). (44)

Now, let

vn := min{z ∈ N | ∀k ∈ {1, . . . , bt2nc} ∃l ∈ N : k2−n ≤ T zl ≤ (k − 1)2−n} (45)

and

Kvn :=
AvnT −A

vn
0

2−2vn
.

Obviously
lim
n→∞

Ant = lim
n→∞

Avnt . (46)

For every k = 1, . . . , bt2nc, let T vnpk be such that

k2−n − T vnpk = min
l=0,...,Kvn

{k2−n − T vnl | k2−n − T vnl ≥ 0}.

Also, define
dnk := k2−n − T vnpk .

Then
ω(T vnpk ) = ω(k2−n − dnk )

and by slightly different reasoning we used to deduce (41) one can show

ω(k2−n)−O(2−n) ≤ ω(T vnpk ) ≤ ω(k2−n) +O(2−n). (47)

Consider

RAnt −A
vn
t =

bt2nc∑
k=1

(
ω(k2−n)− ω((k − 1)2−n)

)2 − Kvn∑
k=1

(
ω(T vnk )− ω(T vnk−1)

)2
≤
bt2nc∑
k=1

(
ω(k2−n)− ω((k − 1)2−n)

)2 − bt2nc∑
k=1

(
ω(T vnpk )− ω(T vnpk−1

)
)2

(48)
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By (47) we have

RAnt −A
vn
t ≤

bt2nc∑
k=1

(
ω(k2−n)− ω((k − 1)2−n)

)2
−
bt2nc∑
k=1

(
ω(k2−n)− ω((k − 1)2−n) + 2O(2−n)

)2
= O(2−2n+3)

bt2nc∑
k=1

(
ω(k2−n)− ω((k − 1)2−n)

)
+ (bt2nc − 1)O(2−4n+4)

≤ O(2−2n+3)
(
ω(bt2nc2−n)− ω(0)

)
+ tO(2−3n+4) (49)

From the fact that ω is bounded on [0, T ] and from (40), (44), (46) and (49) we
obtain

lim
n→∞

RAnt = lim
n→∞

Ant (50)

5 Relative quadratic variation

Let Ω+ be the set of all continuous functions ω : [0,∞)→ (0,∞) (we may also
write C+[0, T ] instead of Ω+). In this section we will consider only ω ∈ Ω+.

Define

Rnt (ω) :=

∞∑
k=0

(
ω(Tnk ∧ t)− ω(Tnk−1 ∧ t)

)2
ω(Tnk−1 ∧ t)2

, n = 0, 1, 2, . . . . (51)

If limn→∞Rnt (ω) exists, we call it a relative quadratic variation of ω and denote
as Rt(ω).

Lemma 5. For each T > 0, it is almost certain that t ∈ [0, T ] 7→ Rnt is a
Cauchy sequence of functions in C+[0, T ].

Proof. Fix T > 0, fix ω ∈ C+[0, T ] and fix n ∈ {1, 2, . . .}. Assume, for simplicity,
that Tn0 = Tn−10 (the reasoning for the other case is similar). Let ZK be the
number of times Rn−1t increased over the time interval [0, TnK ] less one. Since
An−1t increases at the same time Rn−1t does, ZK is also equal to the number of
times An−1t (ω) increased on [0, TnK ] less one. Therefore,

ZK =
An−1TnK

−An−10

2−2n+2
. (52)

For any K = 1, 2, . . .

RnTnK −R
n−1
TnK

=

K∑
k=1

(
ω(Tnk )− ω(Tnk−1)

)2
ω(Tnk−1)

2 −
ZK∑
k=1

(
ω(Tn−1k )− ω(Tn−1k−1 )

)2
ω(Tn−1k−1 )

2

= 2−2n
K∑
k=1

1

ω(Tnk−1)
2 − 2−2n+2

ZK∑
k=1

1

ω(Tn−1k−1 )
2 .

(53)
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Define

σ+
n,K :=

1

(ω(Tn0 )−K2−n)
2 −

1

ω(Tn0 )
2

=
2−n+1Kω(Tn0 )−K22−2n

ω(Tn0 )
2

(ω(Tn0 )−K2−n)
2 .

and

σ−n,K :=
1

(ω(Tn0 ) +K2−n)
2 −

1

ω(Tn0 )
2

= − 2−n+1Kω(Tn0 ) +K22−2n

ω(Tn0 )
2

(ω(Tn0 ) +K2−n)
2 .

Since, the sequence {Ant }n≥1 is bounded (see the proof of Lemma 1), from (17)
and (52) we may infer that K = O(22n) and ZK = O(22n−2). Now, it is easy
to see that

σ+
n,K , σ

−
n,K , σ

+
n−1,ZK , σ

−
n−1,ZK → −

1

ω(Tn0 )
2 , as n→∞. (54)

For any i = 1, . . . ,K and any j = 1, . . . , ZK it is true that

1

(ω(Tn0 ) +K2−n)
2 ≤

1

ω(Tni )2
≤ 1

(ω(Tn0 )−K2−n)
2 . (55)

and

1(
ω(Tn−10 ) + ZK2−n+1

)2 ≤ 1

ω(Tn−1j )2
≤ 1(

ω(Tn−10 )− ZK2−n+1
)2 . (56)

Expressions (55) and (56) are equivalent to

1

ω(Tn0 )2
+ σ−n,K ≤

1

ω(Tni )2
≤ 1

ω(Tn0 )2
+ σ+

n,K . (57)

and
1

ω(Tn−10 )2
+ σ−n−1,ZK ≤

1

ω(Tn−1j )2
≤ 1

ω(Tn−10 )2
+ σ+

n−1,ZK . (58)

respectively.
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It follows from (53), (57) and (58) that

RnTnK−R
n−1
TnK
≤ 2−2n

K∑
k=1

(
1

ω(Tn0 )
2 + σ+

n,K

)
−2−2n+2

ZK∑
k=1

(
1

ω(Tn0 )
2 + σ−n−1,ZK

)

= 2−2nK

(
1

ω(Tn0 )
2 + σ+

n,K

)
− 2−2n+2ZK

(
1

ω(Tn0 )
2 + σ−n−1,ZK

)

=
(
AnTnK −A

n
Tn0

)( 1

ω(Tn0 )
2 + σ+

n,K

)
−
(
An−1TnK

−An−1Tn0

)( 1

ω(Tn0 )
2 + σ−n−1,ZK

)

=
AnTnK

−An−1TnK

ω(Tn0 )
2 +AnTnKσ

+
n,K−A

n−1
TnK

σ−n−1,ZK +2−2n+2

(
1

ω(Tn0 )
2 + σ−n−1,ZK

)
.

(59)

On the other hand,

RnTnK−R
n−1
TnK
≥ 2−2n

K∑
k=1

(
1

ω(Tn0 )
2 + σ−n,K

)
−2−2n+2

ZK∑
k=1

(
1

ω(Tn0 )
2 + σ+

n−1,ZK

)

=
(
AnTnK −A

n
Tn0

)( 1

ω(Tn0 )
2 + σ−n,K

)
−
(
An−1TnK

−An−1Tn0

)( 1

ω(Tn0 )
2 + σ+

n−1,ZK

)

=
AnTnK

−An−1TnK

ω(Tn0 )
2 +AnTnKσ

−
n,K −A

n−1
TnK

σ+
n−1,ZK − 2−2n

(
1

ω(Tn0 )
2 + σ−n,K

)
. (60)

Inequalities (59) and (60) are true for any K = 0, 1, . . .. Choosing the largest
K such that TnK ≤ t (the case Tn−10 ≥ t is trivial) yields

Rnt −Rn−1t ≤ Ant −An−1t

ω(Tn0 )
2 +Ant σ

+
n,K −A

n−1
t σ−n−1,ZK

+ 2−2n+2

(
1

ω(Tn0 )
2 + σ−n−1,ZK

)
. (61)

and

Rnt −Rn−1t ≥ Ant −An−1t

ω(Tn0 )
2 +Ant σ

−
n,K −A

n−1
t σ+

n−1,ZK

+ 2−2n

(
1

ω(Tn0 )
2 + σ−n,K

)
. (62)

The claim of this Lemma follows from setting n → ∞ in (54), (61), from (62)
and from Lemma 1.

Recall, that Ω is equipped with metric defined by (24). Therefore,
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Corollary 2. It is almost certain that the sequence of functions t ∈ [0,∞) 7→ Rnt
converges in Ω.

The following lemma relates relative quadratic variation to absolute one.

Lemma 6. For any t ∈ [0,∞), it is almost certain that

lim
n→∞

Rnt =

∫ t

0

1

ω(s)
2 dAs. (63)

Proof. Suppose that ω is such that Rt(ω) exists (this is true for any ω ∈ C+[0, T ]
almost surely). Consider

RnTnK −
K∑
k=1

(
ATnk −ATnk−1

)
ω(Tnk−1)

2 =

K∑
k=1

(
ω(Tnk )− ω(Tnk−1)

)2
ω(Tnk−1)

2 −
K∑
k=1

(
ATnk −ATnk−1

)
ω(Tnk−1)

2

= 2−2n
K∑
k=1

1

ω(Tnk−1)
2 −

K∑
k=1

(
ATnk −ATnk−1

)
ω(Tnk−1)

2 .

(64)

From (57) and (58) we deduce

RnTnK −
K∑
k=1

(
ATnk −ATnk−1

)
ω(Tnk−1)

2

≤ 2−2nK

(
1

ω(Tn0 )
2 + σ+

n,K

)
−

(
1

ω(Tn0 )
2 + σ−n,K

)
K∑
k=1

(
ATnk −ATnk−1

)
=
(
AnTnK −A

n
Tn0

)( 1

ω(Tn0 )
2 + σ+

n,K

)
−
(
ATnK −ATn0

)( 1

ω(Tn0 )
2 + σ−n,K

)
.

(65)

In the same way we can show that

RnTnK −
K∑
k=1

(
ATnk −ATnk−1

)
ω(Tnk−1)

2

≥
(
AnTnK −A

n
Tn0

)( 1

ω(Tn0 )
2 + σ−n,K

)
−
(
ATnK −ATn0

)( 1

ω(Tn0 )
2 + σ+

n,K

)
.

(66)

The inequalities (65) and (66) together with (54) yield

lim
n→∞

RnTnK = lim
n→∞

K∑
k=1

(
ATnk −ATnk−1

)
ω(Tnk−1)

2 (67)
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Choose the largest K such that TnK ≤ t. From (67) and the definition of
Lebesgue-Stieljes integral we get

Rt = lim
n→∞

Rnt = lim
n→∞

K∑
k=1

(
ATnk −ATnk−1

)
ω(Tnk−1)

2 =

∫ t

0

1

ω(s)
2 dAs. (68)

6 Conclusion and further research

This work further develops the concept of quadratic variation in game-theoretic
probability as defined by Vovk in [5], [6] and [8]. In particular, we show that
quadratic variation defined in Riemannian sense exists under certain conditions
and coincides almost surely with the Lebesgue quadratic variation. We also
show that the relative quadratic variation exists and is equal to Lebesgue-Stiltjes
integral defined via its absolute counterpart. In further research using the results
of [9], [8] and this paper we would like to develop the game-theoretic capital
asset pricing model in continuous time. Specifically, we would like to prove the
analogies to (3) and (4) in this setting.
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