## Audit Analytics

Qi Liu Rutgers Business School ISACA New York 2013

## What is Audit Analytics

### 03

- The use of data analysis technology in Auditing.
- Audit analytics is the process of identifying, gathering, validating, analyzing, and interpreting various forms of data within organization to further the purpose and mission of auditing.
- It can also assists audit departments in fulfilling their responsibilities to evaluate and improve the governance, risk management, and control (GRC) processes as part of the assurance function.



## Benefit of Audit Analytics



- Reproductivity and cost savings
  - stroaden the scope of their assurance activities
  - reduce of staff necessary to complete the audit plan
- Refficiency in data access
  - auditors can access and query data by themselves
- **∞** Audit risk
  - significantly reduce audit risk by honing the risk assessment and stratifying the population

### The Evolving Role of Audit Analytics

### 03

#### Past

### Specialized technology

The domain of specialized IT auditors

### Now

- **™** Essential technique
- Valuable in the majority of audit procedures

#### **Future**

- Integrated throughout the audit process
- All auditors to have an appropriate level of technological competency

## Approaches to Audit Analytics



| Ad Hoc                                                                                                                     | Repetitive                                                                                                                             | Continuous                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Explorative and investigative in nature.                                                                                   | Periodic analysis of processes from multiple data sources.                                                                             | "Always on" — scripted auditing and monitoring of key processes.                                                   |
| Seeking documented conclusions and recommendations.  Seeking to improve the efficiency, consistent quality of audits.      |                                                                                                                                        | Seeking timely notification of trends, patterns and exceptions.                                                    |
|                                                                                                                            |                                                                                                                                        | Supporting risk assessment and enabling audit efficiency.                                                          |
| Specific analytic queries — per-<br>formed at a point in time — for the<br>purpose of generating audit report<br>findings. | Managed analytics — created by specialists — and deployed from a centralized, secure environment, accessible to all appropriate staff. | Continual execution of automated audit tests to identify errors, anomalies, patterns and exceptions as they occur. |

## Applications of Audit Analytics



- Analytical Review
- Controls Assessment and Testing
- **™** Substantive Testing
- Real Praud Detection
- General Analysis and Reporting
- Rinancial and Non-financial Transactions

## Data analysis in audit cycle

The analytic routines and the results they generate should be included in the audit review.

Analyze entire

population instead of

sampling to increase

overall departmental

greater insight into

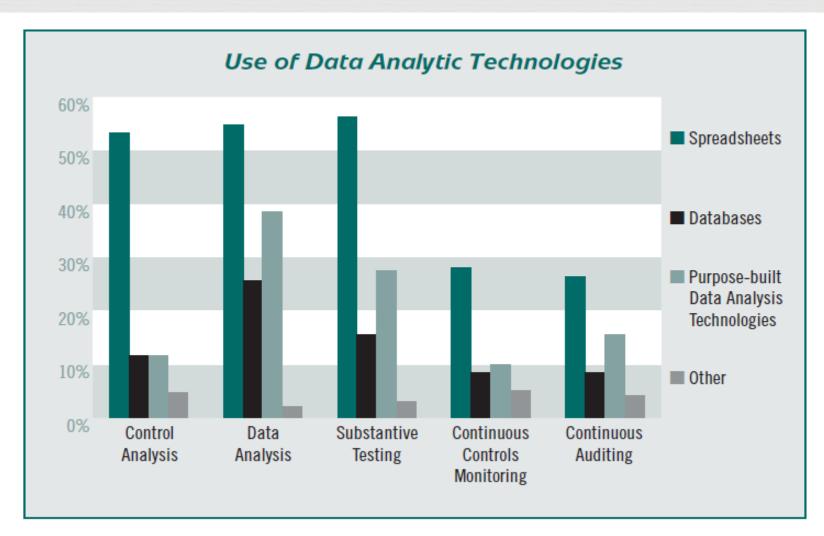
high risk areas.

Review



Planning

Define and create an audit plan that focuses on the areas of highest concern




**Testing** efficiency and allow for

Preparation

Avoid delay of data access

## Using Data Analysis Technology



## Understanding Clients' DataDescriptive statistics & Visualization

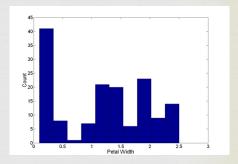
### Descriptive statistics

Sum Sum

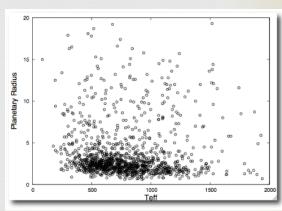
**S** Mean

**S** Max

**Min** 


Standard deviation

**©** Count number


**S** Frequency

### Visualization

**A** Histogram

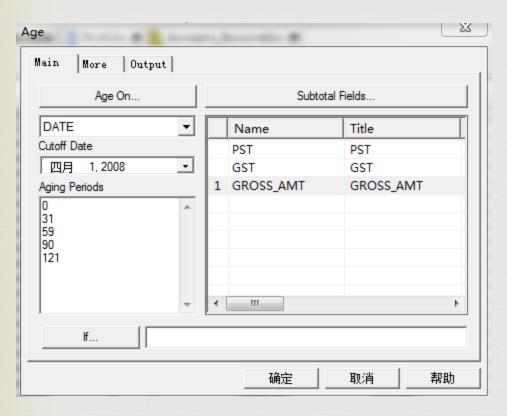


**Graphing** 



## Basic Analytical Techniques

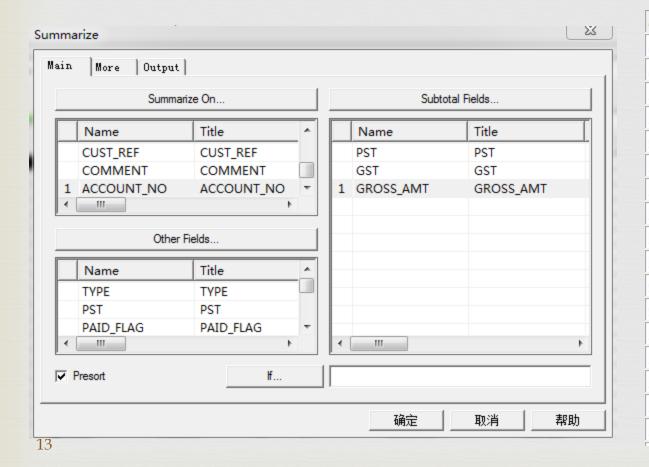



- **<sup>™</sup>** Summarization
- **Classification**
- Stratification
- Age Analysis
- □ Duplication Testing
- **Gap Testing**
- ⊗ Benford's Law

## Application of the basic analytical techniques in auditing

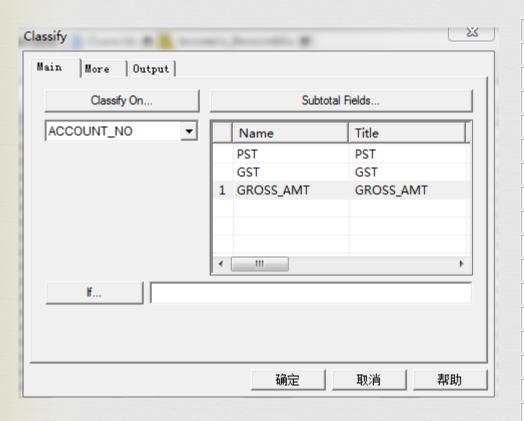
- Accounts receivable audit (demonstration in ACL)
  - Age analysis
  - Analyze the balances by account
- - Analyze the profile of payments
  - Test for duplicate payments
  - Searching for gaps in the check Number Sequence

## Age analysis in ACL



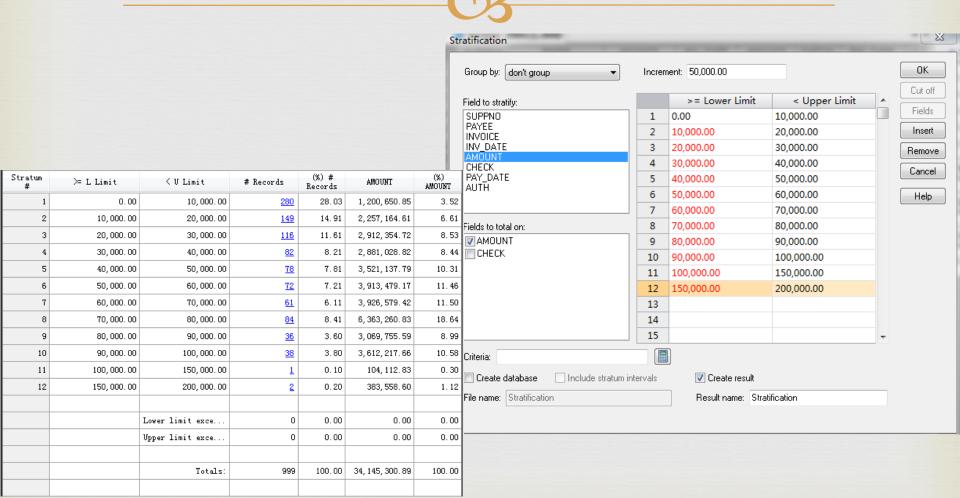



#### Minimum encountered was 0 Maximum encountered was 149

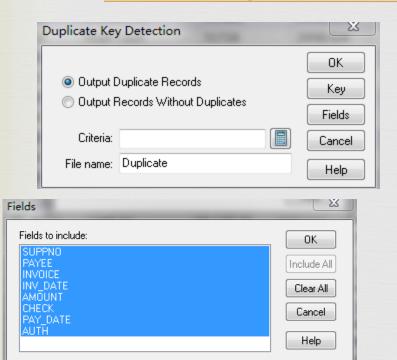

| Days           | Count | Percent of Count | Percent of Field | GROSS_AMT  |
|----------------|-------|------------------|------------------|------------|
| 0 - 30         | 167   | 55.67%           | 53.47%           | 233,037.89 |
| <u>31 - 58</u> | 93    | 31%              | 28.23%           | 123,058.59 |
| <u>59 - 89</u> | 37    | 12.33%           | 17.05%           | 74,303.08  |
| 90 - 121       | 2     | 0.67%            | 0.72%            | 3,119.75   |
| <u>&gt;121</u> | 1     | 0.33%            | 0.54%            | 2,345.54   |
| Totals         | 300   | 100%             | 100%             | 435,864.85 |

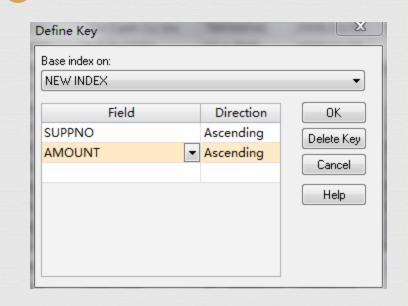
## Analyze the balances by account in ACL




| ACCOUNT_NO  | GROSS_AMT | Count |
|-------------|-----------|-------|
| <u>A123</u> | 7,091.08  | 9     |
| A128        | 5,779.09  | 6     |
| B008        | -431.00   | 1     |
| B010        | 6,753.69  | 9     |
| <u>C020</u> | 19,973.49 | 10    |
| <u>D014</u> | 21,576.24 | 11    |
| <u>D025</u> | 10,731.56 | 12    |
| <u>F123</u> | 6,905.79  | 9     |
| <u>F128</u> | 5,779.09  | 6     |
| F130        | -431.00   | 1     |
| G010        | 6,753.69  | 9     |
| G020        | 16,933.65 | 9     |
| H014        | 21,576.24 | 11    |
| H025        | 11,686.70 | 13    |
| K001        | 14,111.39 | 8     |
| M010        | 8,087.05  | 9     |
| M014        | 24,689.89 | 11    |
|             |           |       |

## Analyze the balances by account in ACL





| ACCOUNT_NO  | Count | Percent of Count | Percent of Field | GROSS_AMT |
|-------------|-------|------------------|------------------|-----------|
| <u>A123</u> | 9     | 3%               | 1.63%            | 7,091.08  |
| <u>A128</u> | 6     | 2%               | 1.33%            | 5,779.09  |
| <u>B008</u> | 1     | 0.33%            | -0.1%            | -431.00   |
| <u>B010</u> | 9     | 3%               | 1.55%            | 6,753.69  |
| <u>C020</u> | 10    | 3.33%            | 4.58%            | 19,973.49 |
| <u>D014</u> | 11    | 3.67%            | 4.95%            | 21,576.24 |
| <u>D025</u> | 12    | 4%               | 2.46%            | 10,731.56 |
| <u>F123</u> | 9     | 3%               | 1.58%            | 6,905.79  |
| <u>F128</u> | 6     | 2%               | 1.33%            | 5,779.09  |
| <u>F130</u> | 1     | 0.33%            | -0.1%            | -431.00   |
| <u>G010</u> | 9     | 3%               | 1.55%            | 6,753.69  |
| <u>G020</u> | 9     | 3%               | 3.89%            | 16,933.65 |
| <u>H014</u> | 11    | 3.67%            | 4.95%            | 21,576.24 |
| <u>H025</u> | 13    | 4.33%            | 2.68%            | 11,686.70 |
| <u>K001</u> | 8     | 2.67%            | 3.24%            | 14,111.39 |
| <u>M010</u> | 9     | 3%               | 1.86%            | 8,087.05  |
| M014        | 11    | 3.67%            | 5.66%            | 24,689.89 |

# Analyze the profile of payments in IDEA



# Test for duplicate payments in IDEA

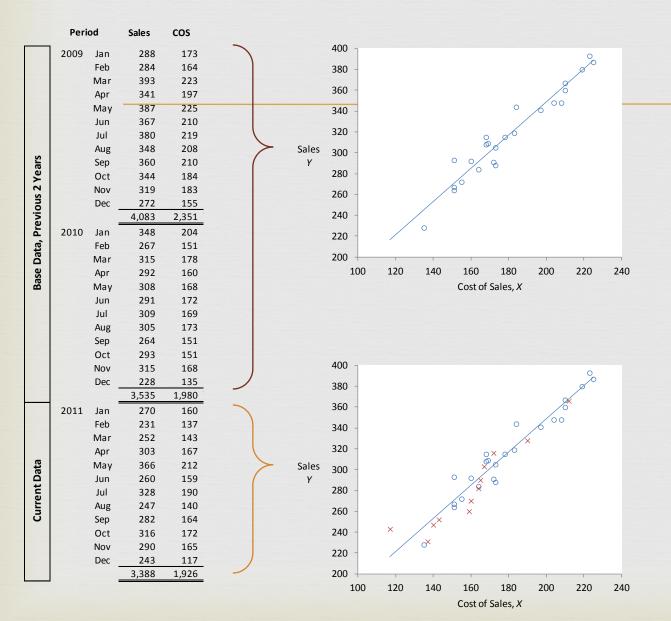




| 1 | SUPPNO | PAYEE       | INVOICE      | INV_DATE   | AMOUNT    | CHECK  | PAY_DATE   | AUTH  |
|---|--------|-------------|--------------|------------|-----------|--------|------------|-------|
| ľ | M100   | M Cash Inc  | UP-76409     | 2008/10/1  | 75,000.00 | 701774 | 2008/10/6  | HMV   |
| 1 | M100   | Cash Inc    | CS - 717 -97 | 2008/9/13  | 75,000.00 | 701728 | 2008/9/15  | VST   |
| 1 | M100   | Co Cash Inc | T5352        | 2008/10/17 | 75,000.00 | 701849 | 2008/10/20 | V.S.T |
| 4 | P007   | Nellie Dunn | 000528CJW    | 2008/6/24  | 145.50    | 701531 | 2008/7/19  | VST   |
| 1 | P007   | Nellie Dunn | 000526CJW    | 2008/6/10  | 145.50    | 701490 | 2008/7/10  | CW    |

## Searching for gaps in the check Number Sequence in IDEA

| Field to use:         | CHECK               | Criteria:                  | OK     |
|-----------------------|---------------------|----------------------------|--------|
| Numeric               |                     |                            | Cancel |
| <ul><li>All</li></ul> | Starting key value: | 701,001                    | Help   |
| Range                 | Ending key value:   | 702,001                    |        |
|                       | Gap increment:      | 1                          |        |
| Output                |                     |                            |        |
| Create data           | abase               | ▼ Create result            |        |
| File name: Ga         | ap Detection        | Result name: Gap Detection |        |


|   | From: CHECK | To: CHECK                      | Number |
|---|-------------|--------------------------------|--------|
| ⊞ | 701,805     | 701,805                        | 1      |
| ⊞ | 701,997     | 702,000                        | 4      |
|   |             |                                |        |
|   |             |                                |        |
|   |             | Total number of items detected | 5      |
|   |             | Total number of gaps detected  | 2      |

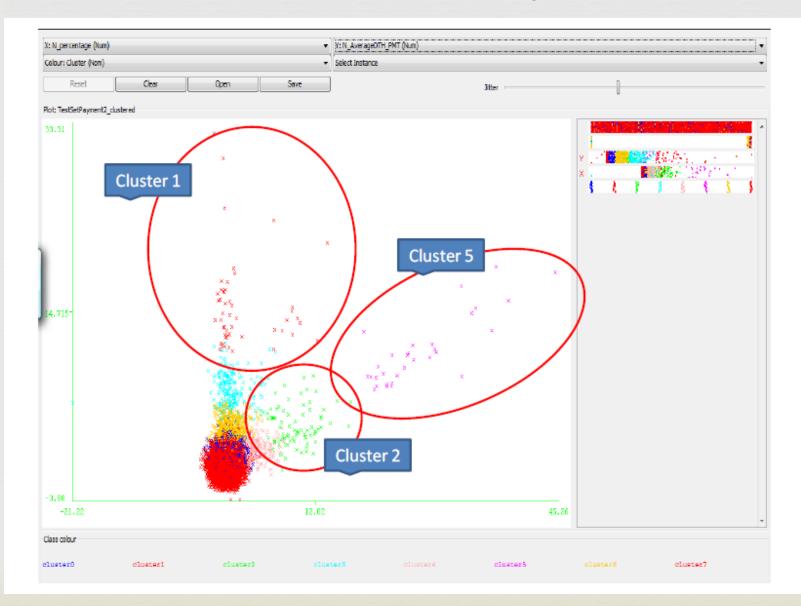
## Advanced Analytical Techniques

CS

- Regression
- **Cluster Analysis**
- Rrocess Mining
- **Continuous** Data Assurance
- **@** .....

### A simple regression application Sales (test variable) vs. Cost of Sales (predicting variable)

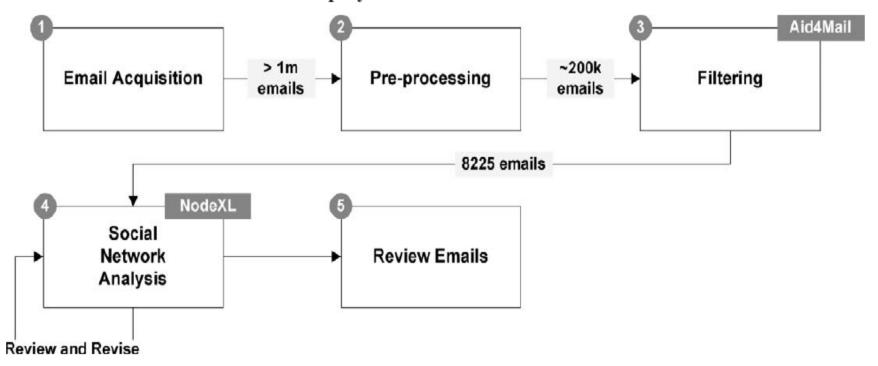



To form the expectation a regression function is developed based on the audited base data (two prior years in this case). The function depicted is:

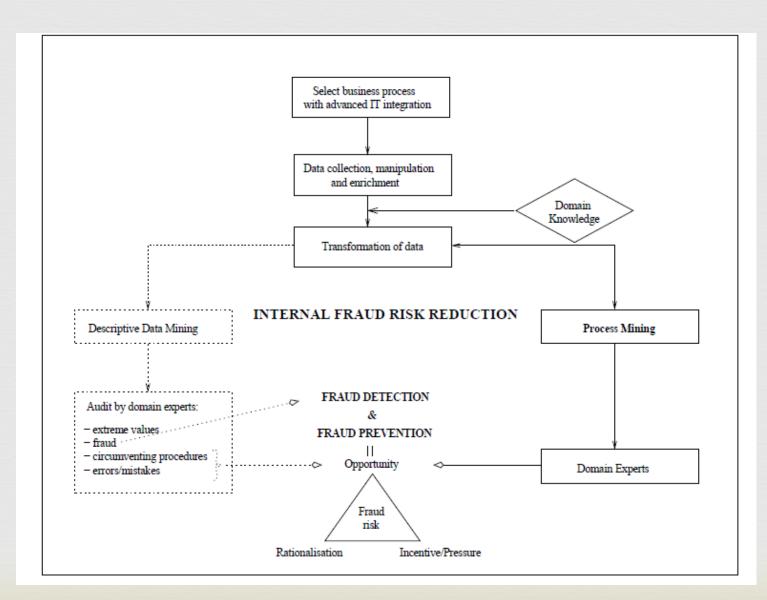
$$Y = 29.56 + 1.5951X$$

Next, Recorded Sales for the current period (x) are compared with Estimated Sales predicted by the regression model.

Recorded – Estimated = Residual


## Cluster analysis




## Text mining



#### **Process Employed to Mine Enron Email Data**



## Process mining



### Continuous Data Assurance System Automatic Analytical **Automatic Transaction** Monitoring Verification **Exception Alarms Anomaly Alarms** Responsible **Business Data Warehouse** Enterprise Personnel Enterprise System Landscape Materials Sales Ordering Management Accounts **Human Resources** Accounts Payable Receivable

### A new certificate in "Audit Analytics"



#### **™** Tentative courses:

- Audit Analytics
- Speical Topics in Audit Analytics
- Information Risk Management
- Individual Study Course
- MACCY students may specialize in the area taking these courses as optionals
- Non-enrolled students may take the 4 course certificate independently

## Audit Analytics

### CB

### Purpose

- Meet the demand for effective and efficient audit methodologies in profession.
- Provide theoretical foundation and applied demonstration for advanced audit methodologies.

### Objectives:

- Gain a managerial overview of various analytical techniques
- Gain understanding of the evolving scenario of big data audit
- Perceive the progressive convergence of analytical methods, information processing, and auditing
- Link audit analytics to corporate continuous monitoring and business process support

### Domains of knowledge to be attained



- Analytics techniques in the audit domain
- The usage of audit analytics tools (ACL&IDEA)
- The usage of statistical software (paid or public; SAS, WEKA, R for example)
- Data extraction methods
- Statistical inference and its usage in auditing

### Analytical techniques to cover

CB

- **©** Descriptive statistics
- Rasic data analysis
- Renford's law
- **Clustering**
- **Continuity Equations**
- **Association** Analysis

- □ Duplicate analysis
- **Sampling**
- **Classification**
- **Regression**
- **™** Neural Network
- Representation of the Process mining