Privacy-preserving Information Sharing within an Audit Firm

Alexander Kogan & Cheng Yin

Introduction

- This paper explores the possibility of sharing firm-level information within an audit firm in a privacy-preserving manner. It demonstrates the benefits of doing so under the assumption that the same audit firm serves multiple clients competing in the same industry.
- Additionally, we introduce an empirical approach for utilizing current accounting information from peer companies without violating clients’ confidentiality.
- We observe significant improvements in estimation accuracy, and error detection performance, when sharing contemporaneous information gathered from peer companies.
- We find that auditors can achieve a comparable level of benefit regardless of whether they share self-generated estimation residuals (errors), or share prediction and actual accounting numbers. Based on this, in order to satisfy stricter privacy concerns, we propose a scheme based on sharing categorical information derived from prediction errors.

Related Work & Research Questions

- **Related Work:**
  - The effectiveness and usefulness of using peer firms as a benchmark.
  - Based on the usefulness of peer firms, previous papers also have investigated the way of choosing peers (economically-comparable firms).
  - A number of both financial accounting and auditing studies have extensively examined the importance of information transfer and industry expertise in providing high-quality audits.

- **Research Questions:**
  - When done in a privacy-preserving manner, do auditors within the same firm benefit from sharing contemporaneous peer audit data?
  - How does the level of sharing affect the prediction performance of the scheme?
  - How does the level of sharing affect the error detection performance of the scheme?

Research Design

- **Peer Selection:**
  - Based on size rank and growth rate rank
- **Sharing Schemes:**
  - A generic sharing scheme
  - Low-level sharing – standardized errors from peer companies.
  - Medium-level sharing – standardized predicted value from peer companies.
  - High-level sharing – standardized true value from peer companies.
- **Categorical Sharing scheme – the sign of prediction errors and the level of deviations**

- **Model Specification:**

\[
\begin{align*}
\text{SALE} &= \alpha + \beta_1 \text{SALE}_{-t-1} + \beta_2 \text{AR} + \epsilon_t \\
\text{COSG} &= \alpha + \beta_3 \text{COSG}_{-t-2} + \beta_4 \text{AP} + \epsilon_t \\
\text{SALE} &= \alpha + \beta_5 \text{SALE}_{-t-12} + \beta_6 \text{IND:\ERROR} + \epsilon_t \\
\text{COSG} &= \alpha + \beta_7 \text{COSG}_{-t-12} + \beta_8 \text{IND:\ERROR} + \epsilon_t \\
\text{SALE} &= \alpha + \beta_9 \text{SALE}_{-t-12} + \beta_10 \text{IND:\ACTUAL} + \epsilon_t \\
\text{COSG} &= \alpha + \beta_11 \text{COSG}_{-t-12} + \beta_12 \text{IND:\ACTUAL} + \epsilon_t \\
\text{SALE} &= \alpha + \beta_13 \text{SALE}_{-t-12} + \beta_14 \text{IND:\SIGN} + \epsilon_t \\
\text{COSG} &= \alpha + \beta_15 \text{COSG}_{-t-12} + \beta_16 \text{IND:\SIGN} + \epsilon_t \\
\text{SALE} &= \alpha + \beta_17 \text{SALE}_{-t-12} + \beta_18 \text{IND:\DEVIATION} + \epsilon_t \\
\text{COSG} &= \alpha + \beta_19 \text{COSG}_{-t-12} + \beta_20 \text{IND:\DEVIATION} + \epsilon_t \\
\end{align*}
\]

We observe that, when comparing peer models to benchmark models, 19 of the 20 industries experience prediction improvements out of which 18 differences are significant and 1 barely significant.

Results

- **Estimation Accuracy:**

<table>
<thead>
<tr>
<th>SIC</th>
<th>Number of Firms</th>
<th>Account Payable</th>
<th>Cost of Goods Sold</th>
<th>Account Receivable</th>
<th>Reserve</th>
<th>Growth Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>7372</td>
<td>3020.00</td>
<td>26.82</td>
<td>35.71</td>
<td>109.56</td>
<td>166.50</td>
<td>14.00%</td>
</tr>
<tr>
<td>6790</td>
<td>226.00</td>
<td>6.56</td>
<td>65.47</td>
<td>206.38</td>
<td>105.89</td>
<td>11.22%</td>
</tr>
<tr>
<td>1531</td>
<td>216.00</td>
<td>205.40</td>
<td>307.19</td>
<td>202.43</td>
<td>438.93</td>
<td>23.63%</td>
</tr>
<tr>
<td>7370</td>
<td>180.00</td>
<td>205.38</td>
<td>245.57</td>
<td>470.39</td>
<td>468.90</td>
<td>19.58%</td>
</tr>
<tr>
<td>2834</td>
<td>152.00</td>
<td>160.39</td>
<td>156.02</td>
<td>405.89</td>
<td>597.10</td>
<td>25.22%</td>
</tr>
<tr>
<td>3674</td>
<td>140.00</td>
<td>85.14</td>
<td>120.34</td>
<td>142.48</td>
<td>292.63</td>
<td>12.98%</td>
</tr>
<tr>
<td>4911</td>
<td>134.00</td>
<td>290.79</td>
<td>516.87</td>
<td>350.11</td>
<td>734.13</td>
<td>4.88%</td>
</tr>
<tr>
<td>5812</td>
<td>124.00</td>
<td>46.97</td>
<td>209.97</td>
<td>370.11</td>
<td>287.36</td>
<td>9.52%</td>
</tr>
<tr>
<td>7373</td>
<td>120.00</td>
<td>42.22</td>
<td>79.94</td>
<td>112.21</td>
<td>133.63</td>
<td>13.37%</td>
</tr>
<tr>
<td>2836</td>
<td>111.00</td>
<td>42.90</td>
<td>47.92</td>
<td>107.46</td>
<td>158.03</td>
<td>26.51%</td>
</tr>
<tr>
<td>3845</td>
<td>100.00</td>
<td>14.80</td>
<td>21.99</td>
<td>49.34</td>
<td>62.58</td>
<td>17.13%</td>
</tr>
<tr>
<td>4813</td>
<td>99.00</td>
<td>359.07</td>
<td>418.57</td>
<td>662.59</td>
<td>873.85</td>
<td>14.88%</td>
</tr>
<tr>
<td>3663</td>
<td>82.00</td>
<td>187.46</td>
<td>292.45</td>
<td>269.43</td>
<td>461.72</td>
<td>11.05%</td>
</tr>
<tr>
<td>3841</td>
<td>68.00</td>
<td>34.47</td>
<td>38.31</td>
<td>65.74</td>
<td>92.55</td>
<td>17.46%</td>
</tr>
<tr>
<td>9995</td>
<td>67.00</td>
<td>94.34</td>
<td>45.49</td>
<td>154.13</td>
<td>60.18</td>
<td>5.92%</td>
</tr>
<tr>
<td>9990</td>
<td>42.00</td>
<td>20.00</td>
<td>100.50</td>
<td>41.76</td>
<td>171.47</td>
<td>14.46%</td>
</tr>
<tr>
<td>3714</td>
<td>63.00</td>
<td>244.00</td>
<td>403.37</td>
<td>338.75</td>
<td>181.73</td>
<td>16.48%</td>
</tr>
<tr>
<td>6331</td>
<td>62.00</td>
<td>1807.07</td>
<td>975.98</td>
<td>3666.59</td>
<td>1145.98</td>
<td>10.15%</td>
</tr>
<tr>
<td>6211</td>
<td>60.00</td>
<td>9534.34</td>
<td>379.00</td>
<td>12763.90</td>
<td>741.76</td>
<td>12.74%</td>
</tr>
<tr>
<td>3576</td>
<td>58.00</td>
<td>55.81</td>
<td>96.10</td>
<td>151.49</td>
<td>267.99</td>
<td>7.86%</td>
</tr>
<tr>
<td>3663</td>
<td>54.00</td>
<td>18.44</td>
<td>27.89</td>
<td>39.87</td>
<td>54.83</td>
<td>12.98%</td>
</tr>
</tbody>
</table>

Sample Selection

- **Data:**
  - A sample of 20 industries containing the most firms experiencing various sales growth rates from 1991–2015, were selected through their 4 digit SIC code.
  - Quarterly data of total revenues, cost of revenues, accounts receivable, and accounts payable was downloaded from the Compustat fundamentals quarterly database for the period 1991 – 2015.

- **Error Detection:**

We observe that with the different prediction intervals the shape of columns stays the same, which implies that the cost of errors among different sharing schemes is similar. In other words, the low-level sharing, medium-level sharing and high-level sharing schemes perform similarly in error detection.

RUTGERS

Rutgers Business School
Newark and New Brunswick
Background

Advances in Cyber-Physical Systems (CPS), Internet of Things (IoT), Internet of Service (IoS), and Smart factory promote a new industry revolution.

Industry 4.0 became publicly known at Hannover Fair in 2011. The German federal government announced Industry 4.0 as one of the key initiatives to implement the German high-tech strategy 2020.

This project foresees the impact of the Industry 4.0 on the auditing profession, imagineers the use of new schemata for audit purposes, and identifies challenges in the transformation towards the new generation of auditing: “Audit 4.0”.

Audit 4.0 Definition

Audit 4.0 will piggyback on technology promoted by Industry 4.0, especially the IoT, IoS, CPS, and smart factories, to collect financial and operational information, as well as other audit-related data from an organization and its associated parties.

It analyzes, models, and visualizes data in order to discover patterns, identify anomalies, and extract other useful information for the purpose of providing effective, efficient, and real-time assurance.

It is typically an overlay of Industry 4.0 business management processes and uses a similar infrastructure, but for assurance purposes.

Challenges & Research Questions

CHALLENGES:

• Digital crime: technique given, technique taken
• Security and privacy issues of companies’ data
• Standardization of information and data

RESEARCH QUESTIONS

• What new types of audit evidence can be generated and collected in the context of Audit 4.0?
• How should the auditing standards be changed to adapt to the next auditing environment?
• What are the new audit procedures to be developed/created in Audit 4.0?
• What new knowledge should auditors obtain to perform audits in Audit 4.0?
**Motivation**

Blockchain is a public ledger that provides a secure infrastructure for transactions among unfamiliar parties without a single central authority. It is:

- Decentralized
- Strong Authentication
- Tamper-resistance

Blockchain’s applications include:

- banking, financial markets, insurance, voting systems, leasing contracts, government service, etc.
- accounting and assurance: underexplored

This project aims to provide an initial discussion on how blockchain could enable a real-time, reliable, and transparent accounting ecosystem. It also discusses how it could help the current auditing paradigm become a more precise, timely, and automatic assurance system.

**Blockchain-based Accounting Ecosystem**

Blockchain could document business transactions and activities in a public, decentralized, and secure ledger, and provide reliable, unchangeable, and timely financial information to interested parties.

Automatic information verification, processing, storing, and reporting could be combined to form a self-sufficient accounting ecosystem.

Smart contracts would operate as autonomous software agents on blockchain and execute various pre-specified or pre-approved accounting tasks under the control of accounting and business rules.

Smart contracts could be combined with IoT technology that can capture the actual conditions and activities of physical objects to monitor the recording process.

**ERP vs. Blockchain**

<table>
<thead>
<tr>
<th>ERP</th>
<th>Blockchain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centralized</td>
<td>Decentralized</td>
</tr>
<tr>
<td>High tampering risk</td>
<td>Low tampering risk</td>
</tr>
<tr>
<td>Relational database</td>
<td>Linear transactional database</td>
</tr>
<tr>
<td>Cannot create self-enforcing contracts</td>
<td>Can create self-enforcing contracts</td>
</tr>
<tr>
<td>Accounting-specific modules</td>
<td>No accounting-specific modules</td>
</tr>
<tr>
<td>Human-intensive</td>
<td>Non-human-intensive</td>
</tr>
<tr>
<td>Controls are specifically designed and in place</td>
<td>Controls could be set through smart contracts</td>
</tr>
</tbody>
</table>

**Applying Blockchain to Continuous Assurance**

**Challenges and Research Questions**

**CHALLENGES**

- Highly demanding of storage and computational power
- The scope of necessary accounting data and other information to be posted to blockchain
- Changes of corporate processes
- Technical training

**RESEARCH QUESTIONS**

- How could a multi-entry system work and interface with evolving traditional systems?
- How should accounting standards be changed? Should there be parallel standards created for this transformation?
- Which accounting data should be recorded in blockchain? What other information (such as IoT data) should be loaded to blockchain in order to provide better assurance?
- Would auditing be needed/necessary with a secure blockchained data stream? In which areas?
Information Technology Capability, Management Forecast Accuracy, and Analyst Forecast Revisions

Feiqi Huang and He Li

Introduction

A firm’s information technology (IT) capability is defined as its ability to mobilize and deploy IT-based resources in combination with other sources and capabilities (Bharadwaj 2000). Prior research demonstrates that the effective use of IT resources can boost a firm’s performance and increase firm value (Muhanna and Stool 2010; Santhanam and Hartono 2003; Shin 2006).

Accurate management forecasts, which rely on the effectiveness and efficiency of management information systems, reduce information asymmetry (Coller and Yohn 1997). They also improve a firm’s reputation for transparent and credible reporting (Garham, Harvey, and Rajgopal 2005). However, little is known about whether IT capability can enhance management’s prediction of their firm’s future performance.

The purpose of this study is to examine whether firms with a high IT capability have more accurate management forecasts. In addition, we test whether analysts incorporate information from management forecasts into their revisions for such firms. We consider firms listed on InformationWeek 500 as having high IT capability.

Methodology

We use data from five sources: InformationWeek, Standard and Poor’s Compustat, Company Issued Guidelines (CIG) of Thomson Financial’s First Call Database, CRSP US Stock Databases, and the Institutional Brokers Estimation System (IB/E/S) database of analyst forecast and actual EPS.

Following Feng et al. (2009) and Heckman (1979), we employ a two stage model to control for the endogeneity issue of voluntary provision of management forecasts, and to test the first hypothesis.

A stream of literature focuses on IT-enabled information management capability, and demonstrates that such capability improves firm-level performance (Kohli and Grover 2008; Sambamurthy, Bharadwaj, and Grover 2003). IT capability contributes to information management capability, which is defined as a firm’s ability to design and manage an effective performance measurement and analysis system (Mithas et al. 2011). In addition, firms equipped with both IT infrastructure and tools, such as data analytics, have a better chance of understanding how to exploit their data and convert them into credible and useful information (Kohli and Grover 2008).

Prior research also documents the relationship between firm’s IT capability and internal controls. Chen et al. (2014) suggest that IT capability contributes to a strong and integrated IT infrastructure to support effectively built-in controls, which significantly enhance the effectiveness of internal controls, especially the effectiveness of IT-related internal controls.

H1: Ceteris paribus, management forecast accuracy is positively influenced by firm’s IT capability.

Firms with high IT capability tend to create intangible benefits (Bharadwaj 2000; Brunstjofsson and Hitt 1997). However, higher levels of intangible resources and assets will also lead to a larger magnitude of mismatched revenues and expenses being reported for these high-intangible firms. This will increase uncertainty about future earnings (Burrow et al. 2002; Dehning, Pfeiffer, and Richardson 2006).

Analysts’ information advantage resides at the macroeconomic level, while managers’ information advantage is most pronounced in cases where analysts find it hard to anticipate managers’ response to unusual operating situations (Hutton et al. 2012). In addition, analysts have incentive to issue accurate earnings forecasts, and overweight management forecasts when they are useful and credible (Feng and McVay 2010).

H2: Ceteris paribus, the extent that analysts incorporate management forecasts is positively influenced by firm’s IT capability.

Results and Contributions

Empirical results support both H1 and H2.

In the regression estimation (2), the coefficient of ITC is negative and statistically significant (-0.004; p-value<0.01). This suggests that on average, management’s forecast errors involving firms with high IT capability is 0.004 lower than those of other firms. Given that the mean management forecast error is 0.011 for the full sample, our result is economically significant. It shows that IT capability can reduce forecast errors by more than 36 percent.

In regression model (3), the variable of interest (MAGRREV*ITC), that captures the analyst’s incremental incorporation for firms with high IT capability, is both positive, and significant (0.326; p-value<0.01). This indicates that analysts perceive management forecasts to be more useful and credible when a firm has high IT capabilities, and thus enhance the extent of incorporation in revised analyst forecasts.

This paper makes several contributions:

First, we fill a void in prior literature by demonstrating the relationship between IT capability and management forecasts. The amount of information present in management forecasts is of great interest to investors, analysts, and academic researchers. By isolating one factor that both statistically and economically influences management forecast accuracy, we provide some value in understanding the credibility and usefulness of management forecasts.

Second, we contribute to analyst forecasting literature by showing that analysts do in fact consider IT capability as a critical variable when making their revisions.

Third, this paper also has implications for IT literature and IS literature. We document that IT capabilities can significantly enhance management’s ability to predict future performance. This provides further evidence that investing in IT is valuable (Mithas et al. 2012).
# Using Drones in Internal and External Audits: An Exploratory Framework

Deniz Appelbaum and Robert Nehmer

## Audit Drone Automation Steps:

<table>
<thead>
<tr>
<th>Drivers</th>
<th>Objectives</th>
<th>Audit Evidence</th>
<th>Change Management</th>
<th>Formulation</th>
<th>Re-engineering</th>
<th>Baseline Monitoring</th>
<th>Scalability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>Development</td>
<td>Management</td>
<td>Implementation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

## Physical Inventory:

- **Current physical audit procedure:**
- **Audit procedure with MANNED drone:** Drone could capture images of flow charts and read/analyze results.
- **Audit procedure with UN-MANNED drone:** Drone could observe and watch procedure, as directed or piloted by the auditor.

### 1. Evaluate

- Verifying that certain procedures and controls are in compliance.
- Drone could capture images of flow charts and read/analyze results.

### 2. Observe

- Observe/watch the procedure.
- Drone could observe and watch procedure, as directed or piloted by the auditor.
- Drone could observe and watch inspection based on video input and sensor tracking.

### 3. Inspect

- Visually and/or physically inspect the inventory.
- Drone could observe and watch the worker physically inspecting or observe/view the inventory condition itself.
- Drone could observe and watch inspection based on video input and sensor tracking.

### 4. Perform

- May need to recount inventory; re-perform inventory numbers.
- Drone could recount inventory if needed – data feeds automatically into audit app which re-performs process.
- Drone is recounting inventory all the time – data feeds automatically into audit app which re-performs process.

## Occurrence:

- **Audit**
  - Watch process or control activity.
  - Drone may watch process or control activity.
  - Drone could watch and follow based on video input and analysis.

## Valuation:

- **Manual audit procedures:** inventory, observation, and valuations.
- **Piloted Drone used for same procedures:**
- **Changes in regulations and procedures??**
- **Bot drones complete routine audit evidence collection:**
- **Changes in regulations and procedure??**
- **Bot drones function as integral assistant to the virtual auditor in a CA environment:**

## Drones as an extension of a virtual auditor: incremental steps

- Flight Capable / Maneuverable
- Video Capable or Camera
- Date Storage
- Can manipulate objects
- Other Sensors - Infrared, Audio, etc.
Introduction

Auditors operate in a complex environment and are often required to make judgments that can have a direct impact on the quality of an audit. When planning for an audit engagement, the auditor must assess audit risk to evaluate the likelihood of issuing an incorrect audit opinion. The risk assessment process helps auditors determine the nature, timing, and extent of audit procedures. Furthermore, the AICPA’s audit risk model has been traditionally used to assess audit risk and plan audit procedures which achieve an acceptable level of audit risk. Based on the assessment of inherent risk and control risk, the auditor determines a tolerable level of detection risk. The audit planning literature is abundant with experimental and archival studies which examine the different components of the audit risk model as well as the factors that impact the risk assessment process. However, very few studies have examined the risk assessment process of senior level auditors in practice. As a result, there is minimal knowledge about how higher level evaluators evaluate information and how they make subsequent judgments with respect to risk assessment. Thus, examination of the strategies auditors use during the risk assessment process and the resulting decisions reached, will provide data that can be used to improve the risk assessment task, as well as enhance the effectiveness of the audit process.

This study uses a modified verbal protocol analysis methodology to understand the nature of the audit planning incorporated and the reasoning and judgment process related to risk assessment during audit planning. More specifically, an incoming manager to the engagement and a recurring partner engaged in a risk assessment discussion. Anecdotal evidence suggests the manager and the partner of an audit engagement perform the risk assessment process during a planning discussion. Therefore, the purpose for the modification of the VPA is to emulate a realistic setting. Experts are less able to verbalize their knowledge as they become more competent (Johnson 1983). Hence, having a new manager on the engagement asking questions about the client may illicit greater information from the audit partner. In this manner, the modified verbal protocols can help obtain information that may not have been verbalized in traditional verbal protocols.

We recorded, transcribed and coded about 45,000 words 6,000 operators into the following categories:

1. Task Structuring—involves the process of understanding the task.
2. Information Acquisition—involves the process of obtaining or retrieving information.
3. Information Processing—involves processes used in the evaluation of information.
4. Decisions—involves the process used in arriving at decisions.

Conclusion

This is the first study, to our knowledge, that investigates audit judgments that are currently made by more experienced auditors (managers and partners) as part of the risk assessment process. By understanding the process of how audit risk assessment is evaluated and the decisions that are derived from those evaluations, this study seeks to provide knowledge that can potentially lead to improved audit risk judgments. This study also contributes to professional practice as it can serve as a baseline in developing audit procedures that can guide auditors in performing more effective risk assessments. Future research can use the data obtained from this verbal protocol analysis to develop a decision support system for risk assessment that can improve audit judgment. Overall, the findings of this study provide valuable insight that can potentially enhance the risk assessment process.

Methodology

Modified verbal protocol analysis (VPA) was employed to capture four verbal protocols for audit partners and managers during the planning discussion. Anecdotal evidence suggests the manager and the partner of an audit engagement perform the risk assessment process during a planning discussion. Therefore, the purpose for the modification of the VPA is to emulate a realistic setting. Experts are less able to verbalize their knowledge as they become more competent (Johnson 1983). Hence, having a new manager on the engagement asking questions about the client may illicit greater information from the audit partner. In this manner, the modified verbal protocols can help obtain information that may not have been verbalized in traditional verbal protocols.

We recorded, transcribed and coded about 45,000 words 6,000 operators into the following categories:

1. Task Structuring—involves the process of understanding the task.
2. Information Acquisition—involves the process of obtaining or retrieving information.
3. Information Processing—involves processes used in the evaluation of information.
4. Decisions—involves the process used in arriving at decisions.

Literature and Research Questions

- **Inherent Risk Assessment**: Audit risk literature emphasizes the factors that influence inherent risk and how auditors judge inherent risk (Helliar et al., 1996; Peters et al., 1989; Boritz et al., 1987). Furthermore, auditors assess inherent risk qualitatively, on an account by account basis or at the financial reporting level (Peters et al., 1989; Martinov-Bennie and Roebuck 1998).
- **RQ 1**: What is the nature of the information processing operations which auditors perform during a planning stage client risk assessment task?
- **RQ 2**: What is the nature and frequency of risks which are verbalized? How are the risks categorized?
- **RQ 3**: What are the key audit decisions that result from the planning discussion?
- **RQ 4**: Do auditors perform a combined risk assessment?
- **RQ 5**: Do auditors evaluate risks using a top-down approach or a directed approach?

Results

**RQ 1**: Information primarily retrieved from memory; evaluation for risk assessments; decision processes are largely the reasons or basis for a particular decision.

**RQ 2**: Financial and non-financial information used to identify risks and similar risks are consistently evaluated; certain risks (e.g., related parties) required to be evaluated by the standards were not discussed; RQ 2 (cont’d): focus on risks at the financial statement account level.

**RQ 3**: Decisions may or may not be expressed in detail (e.g. "perform recalculation of earnings per share") vs. to "focus on earnings per share"); consistent with RQ2, more decisions about risks at the financial statement account level; RQ 3 (cont’d): Materiality discussed at business level ("consider materiality for group audits") yet auditors consider “material non-significant accounts”.

**RQ 4**: Auditors perform a combined risk assessment however, they largely focus on a discussion of the control environment.

**RQ 5**: Three of the four assessments employ a top-down approach.
Formalization of Internal Control Assessment: A Process Mining Application

Abdulrahman Alrefai

Introduction

The Sarbanes-Oxley Act and other regulatory compliance requirements in the area of Internal Controls, force firms to report on the effectiveness of their internal controls. Auditors are required to measure a firm’s internal control system and issue an opinion. Traditionally, auditors have used qualitative methods in order to complete this process. These methods are neither consistent nor efficient at measuring controls objectively. Moreover, there are dire consequences if an auditor, who relies on these methods, fails to accurately measure the effectiveness of internal controls. Motivated by these factors, auditors should be eager to embrace a more formal internal control assessment process with quantitative outcomes.

The aim and contribution of this study is to provide a quantitative methodology whereby the effectiveness of internal controls can be measured. Specifically, this paper develops a conceptual model that illustrates how process mining can be used to test internal controls to provide an overall formalized measure of the effectiveness of the internal control system for a business process. It also extends the methodology by developing a framework that can incorporate different testing methodologies, such as matching the control settings of the information system to a well-defined benchmark, or applying text mining techniques for contract compliances, and aggregate the results to assist auditors in formalizing their opinion over the internal control system. Basically, the system attempts to run tests on a dataset relative to a specific audit function, produce results, and based on those results, provide a formalized measure for the effectiveness of the internal control system.

Results

Based on testing and measuring the effectiveness of the controls related to the procurement business process, the results indicate that it would get a score of 0.8943 for the overall effectiveness of the internal control system for that business process. This is indicative of a slightly deficient internal control system, albeit being very close to the cutoff point of 0.9 for it to be considered an effective internal control system.

Methodology

Step 1: Identify the controls which need to be implemented by a firm seeking to protect assertions and mitigate risks.

Step 2: Apply process mining techniques as a method for acquiring direct evidence on the controls’ compliance, highlighting any deficiencies within the internal control system.

Step 3: Calculate the effectiveness of each control based on the severity of deficiencies and exceptions that were generated.

Step 4: Measure the total effectiveness of the internal control system for the overall business process.

Literature Review

- The assessments generated by qualitative methods alone are insufficient for developing comprehensive internal control evaluation models (Yu & Neter 1973; Mock & Turner, 1981; and Bierstaker and Wright, 2004; Mock et al. 2009).
- Since computers hold advantages in speed, accuracy, memory capacity and processing power, a systematic internal control model should be introduced which aids auditors or management in evaluating internal control system (Bailey et al. 1985).
- The consideration of the whole population of transactions in testing can enhance the effectiveness of an audit and increases the probability that material errors, omissions, fraud, and internal control violations may be detected (Chan and Vasarhelyi 2011).
- Determining the reliability of a control consists of aggregating the possibilities that the control is applied (compliance) and that it is effective (design) (Srinidhi and Vasarhelyi 1989).

Analysis

The data used relates to the procurement process of a leading European bank that ranks among the top 25 in the world by asset size.
Resistance to change is a familiar phenomenon in almost all domains. The accounting profession is not immune to such behavior either. For example, in the 1980s accountants resisted the activity based costing methods proposed by engineers, which they later adopted (Kaplan and Johnson 1987). Nowadays, auditors are resisting technological advancements with respect to their audit processes. This reality has made professional institutions and academics alike expose the outdated approaches and techniques used in the audit profession (AICPA 2012, Alles 2015, Manson et al. 2007). This study presents two cases that shed light on current practices and pave the way for future in-depth research aimed at understanding the reasons behind such a phenomenon.

**Objective and Motivation**

Understanding why outdated techniques exist in the audit profession is far from trivial. The objective of this paper is to explore this phenomenon via two practical real-life case studies, and briefly present the barriers to change and proposed solutions.

**Barriers to Change**

In this section we aim to explore some of the probable barriers to adopting technology in the audit profession. The barriers to adopting new technologies in the audit process are many and singling or prioritizing one over the other is nontrivial, and probably requires further research. However, at this stage, we are concerned with presenting the various barriers based on literature and practice. Below are some barriers that may be contributing to the current situation. The points are sorted based on the three major players: Auditors, Auditees, and Standard Setters.

**Audit Firms**

- IT-related activities are sophisticated
- Dilemma of exposing overlooked cases in the past
- Profitability of the firm might be effected

**Auditees**

- Protective of their data
- The driver of technology utilization is the demand for it rather than the supply of technology

**Standard Setters**

- No professional auditing guidance on both the theory and practice of advanced methods in auditing like data analytics and CA/CM (Byrnes et al. 2015)
- The vagueness of standards and guidance in that area might dissuade both auditors and auditees from moving forward

**Case Study 1**

The first case involves a large multinational company which has an extensive financial services arm in support of sales and internal financing. They developed a capable continuous monitoring solution that provides assurance and monitoring for more than 250 controls related to operation and compliance on a continuous basis. The continuous monitoring tool was fully accredited by both the internal audit staff and the external auditors for all key IT general controls (ITGC), which helped assure that IT application controls, analytics, and monitoring frequency could not be compromised. Thus, auditors and the company could rely on the assurance provided by the tool. The external auditors proceeded to ask for non-statistical samples from the control system even though the system reports documented that the 250+ controls ran during the exposure period of the audit and that all identified anomalies were remediated and documented.

**Case Study 2**

The second case involves a large multinational IT service provider and their external audit provider delivering a Third Party Assurance Type II audit. The service provider had three consecutive years of qualified SSAE-16 reports for failures identified via non-statistical sampling. The deficiencies identified were different each year but were mostly in the areas of missed security updates, patching, and network level version upgrades on servers in some of their data centers. Recognizing that using manual identification and remediation methods to identify and update more than 7000 servers is nearly impossible, the service provider developed and purchased an impressive set of CA/CM tools with analytics that monitor all 7000+ servers continuously and automatically install updates and patches for all servers as required. However, the external auditors were unwilling to leverage the tools the service provider already had in place and that were fully accredited.

**Conclusion**

It is evident that technologies such as CA/CM and analytics can provide a superior level of assurance and deliver it at a much faster rate. Moreover, it is also essential for both the audit standards and practice to keep up with the new business landscape. The need for a change in standards goes beyond replacing sampling and encouraging population-based monitoring. Standards need to incorporate agile, robust, quantitative, and qualitative audit processes that are able to detect more anomalies and deficiencies. Furthermore, standards need to assure that appropriate management judgments are made to remediate and report such issues.

While our paper provides some insight, further research is definitely needed in order to fully explore and explain the presented phenomenon. Our following papers will dig deeper into finding more definitive answers as to why this phenomenon is so entrenched in the modern accounting practice, and how practitioners can alter this behavior.
The Survived Companies With Going Concern Opinions Are Really Different From Those Bankrupted—An Exploration About Distressed Companies’ Resilience

Alexander Kogan and Jiahua Zhou

The study searched SEC’s EDGAR and collected a sample of 2378 manufacture companies with the initial GCOs, whose SIC first two digits range from 20 through 39, between 1998 and 2015. 415 of these companies went bankrupt within 2 years of the GCO. The paper collected detailed, firm-specific, financial data from the two years before and after the GCOs were issued using COMPUSTAT. The final data has 4522 observations, including 994 bankrupted observations. The sample includes 35 variables, 16 of which are industry scaled (scaled by industry mean and standard deviation).

**H1a:** In the GCO year, the following bankrupted firms have more severe liability problems than following survived firms. Other proxies have no big and significant difference.

**H1b:** In the posterior one year, the following survived firms can have more efficient cash for their operation than GCO year, and other proxies cannot have significant change.

**H1c:** In the posterior two years, the general financial states of the following survived firms would have significant change.

**H2:** In the GCO year, the dynamic financial proxies do not have substantial difference between the following bankrupted and survived companies, but, in the priori second year, these proxies can have faster negative change for the following bankrupted companies.

**H3:** Strategic cash production ability can have significant difference between the following bankrupted and survived from priori two years through posterior two years.

**H4:** Industry scaled proxies have stronger prediction for static financial ratios than firm-specific proxies.

### Data Description and Hypotheses

Both industry and academics consider an auditor’s going-concern opinion (GCO) as a signal that a company may face impending bankruptcy. Despite this fact most of these companies who are issued GCOs will survive. This paper aims to observe the differences between companies that were issued GCOs and survived, and those that went bankrupt. The purpose of this is to answer two questions: (1) What kind of information about clients’ value creation and strategic features can help to decrease auditors’ type I error? (2) What are the fundamental factors which lead to a firms resilience under severe financial pressure allowing it to avoid bankruptcy?

### Literature Review

There is an abundance of literature which has studied GCO determinants, e.g. Mitchler (1984) and LaSalle and Anandarajan (1996). This literature has provided survey evidence from auditors about the relative importance of different financial ratios used when issuing GCOs. SAS No. 56 (AICPA [1988]) suggests that client financial information should be evaluated over time and related to industry measures. Based on these guidelines, Bell et al. (1991) converted the control variables into both rate-of-change, and industry-standardized measures, effectively extending GCO determinants. For GCO accuracy, several studies have found that 80–90% of companies that receive a GCO, do not fail in the subsequent year (Mitchler et al., 1990; Garsombke et al.; Geiger et al., 1998; Pryor et al., 2002). Methodology literature originally explored discriminant analysis and neural network approaches. More recent studies however, have moved away and began to take Logit and Probit regression (Carson et al., 2013).

### Methodology and Results

The paper covered four studies, including two logistic regressions, factor analysis and paired T-test, to show the cascaded map of the evolution of firms’ bankruptcy and survival. The study used the dynamic change measurements from three time points to show the evolution of bankruptcy and survival. (1) From two years priori GCO to GCO year, the dynamic financial ratios, including sales, earnings ability, decreased faster for the bankrupted companies than survived companies; (2) In GCO year, liability, especially current liability, have significant difference between survived and bankrupted companies, but there are no significant difference for dynamic financial ratios; (3) From GCO year through the first posterior year, survived companies only improve their cash position, and until the second posterior year, some other proxies for financial states began to significantly improve, and from the third posterior year sales began to increase significantly.

### Conclusions and Future Research

This research has two main contributions: First, this is the first study to explore the type I error of GCOs in audit literature, and it finds several proxies that should be investigated more closely. Second, The methodology with industry scaled variables offers new findings about the whole picture of firms’ bankruptcy and survival. In future research, it is approachable to observe how corporate governance exerts its effect after the initial GCO, and how management plan influence for firms’ survival.

### Table 2: Selected Result of the Paired T-test in GOC year and posterior two years

<table>
<thead>
<tr>
<th>Variables</th>
<th>GCO year</th>
<th>Posterior one year</th>
<th>T value</th>
<th>Posterior two years</th>
<th>T value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Capital to Total Liability (WCTL)</td>
<td>.65</td>
<td>57.01</td>
<td>-1.01 (.314)</td>
<td>1.136</td>
<td>-2.57 (.010*)</td>
</tr>
<tr>
<td>Net Equity to Total Liability (NETL)</td>
<td>1.299</td>
<td>57.91</td>
<td>-1.01 (.312)</td>
<td>1.98</td>
<td>-2.52 (.0118*)</td>
</tr>
<tr>
<td>Cash Position</td>
<td>-.2789</td>
<td>.37</td>
<td>2.22 (.0264**)</td>
<td>.357</td>
<td>-1.81 (.0707*)</td>
</tr>
<tr>
<td>Industry scaled WCTL</td>
<td>-.320</td>
<td>35.27</td>
<td>-1.00 (.359)</td>
<td>-.147</td>
<td>-2.56 (.010*)</td>
</tr>
<tr>
<td>Industry scaled NETL</td>
<td>-.271</td>
<td>25.72</td>
<td>-1.315</td>
<td>-.087</td>
<td>-2.72 (.0068**)</td>
</tr>
<tr>
<td>Industry scaled Cash Position</td>
<td>-.194</td>
<td>-.092</td>
<td>-2.01 (.045*)</td>
<td>-.135</td>
<td>-1.08 (.2804)</td>
</tr>
<tr>
<td>Industry scaled Improve</td>
<td>-.196</td>
<td>-.048</td>
<td>-.46 (.647)</td>
<td>-.355</td>
<td>-1.75 (.0801*)</td>
</tr>
</tbody>
</table>

### Table 1: Selected Results for Two Logistic Regressions

<table>
<thead>
<tr>
<th>Dependent Variable: Bankruptcy</th>
<th>Logistic Regression on Extracted Factors</th>
<th>Logistic Regression on change before two years to GCO year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earnings ability</td>
<td>-.17 (.3181)</td>
<td>ChangeAsset</td>
</tr>
<tr>
<td>Liability load</td>
<td>49.05 (-.0001***</td>
<td>ChangeEbitda</td>
</tr>
<tr>
<td>Liquidity ability</td>
<td>-.007 (.0282*)</td>
<td>ChangeSale</td>
</tr>
<tr>
<td>Long-term liability ability</td>
<td>-.073 (.3196)</td>
<td>ChangeROIC</td>
</tr>
<tr>
<td>Operational inefficiency</td>
<td>.0514 (.493)</td>
<td>ChangeSaleGrow</td>
</tr>
<tr>
<td>The unfitness of sales and operation</td>
<td>.12 (.002**)</td>
<td>ChangeFreeCashF</td>
</tr>
</tbody>
</table>
As in today’s information age, external auditors need to deal with huge amounts of information when they evaluate performance of their clients. An effective interactive decision support system that can be used in the risk assessment process will help auditors analyze information and make subsequent judgments with respect to risk assessment. Very few recent studies have focused on examining or developing audit decision support tools that could provide auditors suggestions for the risk assessment process during audit plan.

This study contributes to literature and practice by providing a proposed audit DSS prototype that can potentially guide auditors to perform more effective risk assessments and lead to improved audit risk judgments in practice.

### Motivation

- A Rule-based Tool
  - Predetermine various situations for risk assessment; allow auditors easily to choose and inquire information they need, such as different industries, firms, different categories and levels of risks, significant accounts etc.
- A Database that Supplement Memory
  - Information can be extracted from multiple sources stored in the DB (traditional sources such as financial statements, news and comments from Internet, predefined policy and rules, etc.)

### Purposes of the proposed DSS

- A Interactive Tool
  - Provide in-time decision aids during risk assessment (discussions, comparisons, ranking algorithms, etc.)
- A Rule-based Tool
  - Predetermine various situations for risk assessment; allow auditors easily to choose and inquire information they need, such as different industries, firms, different categories and levels of risks, significant accounts etc.
- A Database that Supplement Memory
  - Information can be extracted from multiple sources stored in the DB (traditional sources such as financial statements, news and comments from Internet, predefined policy and rules, etc.)

### Partial summarized risk assessment procedures for DSS framework

<table>
<thead>
<tr>
<th>No.</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Understand the company and its environment</td>
</tr>
<tr>
<td>1.1</td>
<td>Industry, regulatory, and other external factors</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Industry factors:</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Competitive environment</td>
</tr>
<tr>
<td>1.1.3</td>
<td>Technological developments</td>
</tr>
<tr>
<td>1.1.4</td>
<td>Regulatory environment:</td>
</tr>
<tr>
<td>1.1.5</td>
<td>Applicable financial reporting framework</td>
</tr>
<tr>
<td>1.1.6</td>
<td>Legal and political environment</td>
</tr>
<tr>
<td>1.2</td>
<td>External factors:</td>
</tr>
<tr>
<td>1.2.1</td>
<td>General economic conditions</td>
</tr>
<tr>
<td>1.2.2</td>
<td>The size of the company</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Organizations structure and management personnel</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Sources of funding</td>
</tr>
<tr>
<td>1.2.5</td>
<td>Significant investments</td>
</tr>
<tr>
<td>1.2.6</td>
<td>Key supplier and customer relationships</td>
</tr>
<tr>
<td>1.3</td>
<td>Company’s selection and application of accounting principles</td>
</tr>
<tr>
<td>1.4</td>
<td>Company Objectives, Strategies, and Related Business Risks</td>
</tr>
<tr>
<td>1.5</td>
<td>Company Performance Measures</td>
</tr>
<tr>
<td>2</td>
<td>Understand Internal Control</td>
</tr>
<tr>
<td>2.1</td>
<td>The control environment</td>
</tr>
<tr>
<td>2.2</td>
<td>The company’s risk assessment process</td>
</tr>
<tr>
<td>2.3</td>
<td>Information and communication</td>
</tr>
<tr>
<td>2.4</td>
<td>Central activities</td>
</tr>
<tr>
<td>2.5</td>
<td>Monitoring of controls</td>
</tr>
<tr>
<td>3</td>
<td>Considering Information from the Client Acceptance and Retention Evaluation, Audit Planning Activities, Past Audits, and Other Engagements</td>
</tr>
<tr>
<td>3.1</td>
<td>Client Acceptance and Retention Audit Planning Activities</td>
</tr>
<tr>
<td>3.2</td>
<td>Past Audits</td>
</tr>
<tr>
<td>3.3</td>
<td>Other Engagements</td>
</tr>
</tbody>
</table>

### Purposes of the proposed DSS

- A Interactive Tool
  - Provide in-time decision aids during risk assessment (discussions, comparisons, ranking algorithms, etc.)
- A Rule-based Tool
  - Predetermine various situations for risk assessment; allow auditors easily to choose and inquire information they need, such as different industries, firms, different categories and levels of risks, significant accounts etc.
- A Database that Supplement Memory
  - Information can be extracted from multiple sources stored in the DB (traditional sources such as financial statements, news and comments from Internet, predefined policy and rules, etc.)

### Common risk assessment procedures identified from cases through verbal protocol analysis

<table>
<thead>
<tr>
<th>Common procedure</th>
<th>Material used</th>
<th>Potential support from DSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updates understanding of the entity</td>
<td>News, financial statements, memory</td>
<td>Information retrieval support</td>
</tr>
<tr>
<td>Significant accounts</td>
<td>Financial statement, memory</td>
<td>Suggestions/ranking on significant accounts</td>
</tr>
<tr>
<td>Financial statement level risks</td>
<td>Information from performing risk assessment procedures, memory</td>
<td>Ranking</td>
</tr>
<tr>
<td>Significant risks of error – assertion level</td>
<td>Information from performing risk assessment procedures, memory</td>
<td>Information retrieval support</td>
</tr>
<tr>
<td>Use of specialists, experts, internal audit and/or others</td>
<td>Memory</td>
<td>Information retrieval support</td>
</tr>
<tr>
<td>Identify Fraud Risk Factors</td>
<td>Financial statement, memory</td>
<td>Suggestions/ranking on fraud risk factors based on prior experience</td>
</tr>
<tr>
<td>Accounting policies</td>
<td>Memory</td>
<td>Information retrieval support</td>
</tr>
<tr>
<td>Significant IT applications</td>
<td>Memory</td>
<td>Information retrieval support</td>
</tr>
<tr>
<td>Consideration of Internal Control Over Financial Reporting</td>
<td>Memory</td>
<td>Suggestion/ranking of controls to test</td>
</tr>
<tr>
<td>Related parties</td>
<td>Memory</td>
<td>Information retrieval support</td>
</tr>
<tr>
<td>Reporting framework</td>
<td>Memory</td>
<td>Information retrieval support</td>
</tr>
<tr>
<td>Materiality</td>
<td>Memory, filings</td>
<td>Suggestions</td>
</tr>
<tr>
<td>Professional skepticism and attentiveness for information or conditions affecting fraud risk</td>
<td>Memory</td>
<td>Suggestions</td>
</tr>
</tbody>
</table>
Apply Process Mining to Evaluate Internal Control Effectiveness Automatically

Tiffany Chiu, Miklos A. Vasarhelyi and Mieke Jans

Introduction

- Unlike traditional auditing analytical procedures, process mining of event logs provides a new aspect for auditing in the way that this technique processes the whole population of data instead of using only selected sample from the data.
- Previous studies indicated that using process mining of event logs in auditing analytical procedure can successfully detect anomalous transactions which traditional auditing analytical procedure may fail to discover (Jans et al. 2014).
- Moreover, the application of process mining to internal auditing could improve the effectiveness of internal control (Kopp and Donnell 2005; Jans et al. 2011, 2014).
- This paper aims at applying process mining to evaluate internal control effectiveness: (1) Determine the controls required for the business process including the rules for acceptable and unacceptable variants (e.g., the variant is unacceptable if the purchase order has been released without sign). (2) Highlight the weakness of internal control by automatically extracting the unacceptable variants. (3) Conduct two additional analysis: segregation of duty analysis and timestamp examination.

Methodology and Dataset (1/2)

- This paper proposed 3 perspectives that process mining can be applied to audit. The 3 aspects are as follows: (1) Process Examination, (2) Timestamp Examination, and (3) SOD (Segregation of Duty) Examination.
- Process examination refers to examining the pattern of each process instance, this analysis could assist auditors in understanding whether the client firm’s internal control process conforms to its internal control policies. In addition, process examination enable auditor’s to focus their work on potential high risk process instances that violate the rules.
- Timestamp examination refers to examining the timestamp of the process instance to find out whether there exist inefficient process or potential high risk processes.
- SOD examination mainly captures the process instances that violate the segregation of duties.
- The data applied in this study is from a large European bank, and the detail information can be found in the table below:

<table>
<thead>
<tr>
<th>Process Mining of Event Logs</th>
</tr>
</thead>
<tbody>
<tr>
<td>The data and standard process applied in this paper is displayed below. The graph shows standard process in the procurement to pay cycle:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristics of Event</th>
<th>Variants</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Activity</td>
<td>The activity taking place during the event (e.g. sign)</td>
</tr>
<tr>
<td>(2) Process Instance</td>
<td>The process instance of the event (e.g. invoice)</td>
</tr>
<tr>
<td>(3) Originator</td>
<td>The originator or party responsible for the event (e.g. action owner)</td>
</tr>
<tr>
<td>(4) Timestamp</td>
<td>The timestamp of the event or the date/time of the event (e.g. 206-11-07T10:00:36)</td>
</tr>
</tbody>
</table>

Literature Review

- Process mining has been widely applied in computer science, engineering and management research topics (Schimm 2003, Van der Aalst and Weijters 2004, Rozinat et al. 2007, Lijie et al. 2009). However, the application of process mining in auditing and other accounting sub-areas remains in a premature stage.
- Event logs and process mining techniques enable new forms of auditing (Van der Aalst et al. 2010).
- There are two main advantages of using event logs in auditing: (1) it provides the auditor with more data, (2) it provides a human-independent way of recording data (Jans et al. 2010; Bukhsh and Weigand 2012).
- Process mining can provide new audit evidences as the analysis of event logs focuses on the transactional processes rather than the value of transactions and its aggregation (Jans et al. 2014).
- The application of process mining to internal auditing could improve the effectiveness of internal control (Kopp and Donnell 2005; Jans et al. 2011, 2014). Compared with using control objective information, using business process focused information in the internal control framework could improve the effectiveness of internal control evaluation (Kopp and Donnell 2005).

Results and Conclusion

<table>
<thead>
<tr>
<th>Results and Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methodology and Dataset (2/2)</td>
</tr>
<tr>
<td>The data and standard process applied in this paper is displayed below. The graph shows standard process in the procurement to pay cycle:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Categories</th>
<th>Variants</th>
<th>Process Instances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptable Variants</td>
<td>49 (5%)</td>
<td>19,198 (73.32%)</td>
</tr>
<tr>
<td>Unacceptable Variants</td>
<td>931 (95%)</td>
<td>6,987 (26.68%)</td>
</tr>
</tbody>
</table>

Classification Results

<table>
<thead>
<tr>
<th>Classification Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Same person perform 'Sign' and 'Release'</td>
</tr>
<tr>
<td>Same person perform 'Release' and 'GR'</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Methodology and Dataset (2/2)

- This paper provides 3 perspectives of using process mining to evaluate internal control effectiveness automatically.
- The classification results indicates that by classifying variants into different categories, it is possible for process mining to detect potential risks and inefficient internal processes.
- Process mining could be a new audit evidence for auditors as they could use process mining results in their audit work (i.e., auditors could focus more on the cases that have been classified as unacceptable variants, violate segregation of duty or have longest process duration).
The performance of sentiment features of MD&As for financial misstatement prediction: A comparison of deep learning and text mining approach

Ting Sun, Yue Liu, and Miklos A. Vasarhelyi

Objectives
- Examine the predictive power of sentiment scores of MD&A generated by deep learning and text mining (bag-of-words) approach for future financial misstatements.
- Compare the accuracy of two predictive models with one using the sentiment score provided by deep learning approach and the other using the sentiment score provided by text mining approach.
- Demonstrate that the sentiment features of MD&A provide incremental information for financial misstatement prediction.

Data
- 30,239 10-K MD&A text files associated with 10-Ks from 2006 to 2015.
- 4,095 firm-years contain financial misreporting (restatement rate=13.5%).
- 30 Financial and audit-related variables as control variables, following prior research (XXX).

Predictive Model
- Decision tree
- Algorithm: CHAID (with boosting)

Sentiment score generated by deep learning approach and sentiment score generated by text mining approach

Table 1 deep learning vs. text mining for sentiment analysis of MD&As

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs.</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentiment score 1 (deep learning approach)</td>
<td>30239</td>
<td>0.0195</td>
<td>0.0783</td>
<td>-0.5606</td>
<td>0.7487</td>
</tr>
<tr>
<td>Sentiment score 2 (“bag of words” approach)</td>
<td>30239</td>
<td>-0.0047</td>
<td>0.0064</td>
<td>-0.0721</td>
<td>0.0307</td>
</tr>
</tbody>
</table>

Table 2 Summary statistics for two sentiment scores

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs.</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentiment score 1</td>
<td>30239</td>
<td>0.0195</td>
<td>0.0005</td>
<td>0.0186 to 0.0203</td>
</tr>
<tr>
<td>Sentiment score 2</td>
<td>30239</td>
<td>-0.0068</td>
<td>0.0000</td>
<td>-0.0069 to -0.0067</td>
</tr>
<tr>
<td>Combined</td>
<td>60478</td>
<td>0.0063</td>
<td>0.0002</td>
<td>0.0059 to 0.0068</td>
</tr>
<tr>
<td>diff</td>
<td>60478</td>
<td>0.0263</td>
<td>0.0005</td>
<td>0.0254 to 0.0272</td>
</tr>
</tbody>
</table>

**Table 3 Two-sample t test for two sentiment scores**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs.</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentiment score 1</td>
<td>30239</td>
<td>0.0195</td>
<td>0.0005</td>
<td>0.0186 to 0.0203</td>
</tr>
<tr>
<td>Sentiment score 2</td>
<td>30239</td>
<td>-0.0068</td>
<td>0.0000</td>
<td>-0.0069 to -0.0067</td>
</tr>
<tr>
<td>Combined</td>
<td>60478</td>
<td>0.0063</td>
<td>0.0002</td>
<td>0.0059 to 0.0068</td>
</tr>
<tr>
<td>Diff</td>
<td>60478</td>
<td>0.0263</td>
<td>0.0005</td>
<td>0.0254 to 0.0272</td>
</tr>
</tbody>
</table>

**Table 4 Predictive results**

<table>
<thead>
<tr>
<th>Model</th>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Training set (60%)</td>
<td>Test set (40%)</td>
</tr>
<tr>
<td><strong>Overall accuracy</strong></td>
<td>76.78%</td>
<td>63.64%</td>
</tr>
<tr>
<td><strong>Type one error rate</strong></td>
<td>23.14%</td>
<td>36.40%</td>
</tr>
<tr>
<td><strong>Type two error rate</strong></td>
<td>23.40%</td>
<td>35.76%</td>
</tr>
<tr>
<td><strong>AUC</strong></td>
<td>0.8480</td>
<td>0.7170</td>
</tr>
<tr>
<td><strong>Sample Size</strong></td>
<td>4814</td>
<td>25425</td>
</tr>
<tr>
<td><strong>Total Sample</strong></td>
<td>30239</td>
<td>30239</td>
</tr>
</tbody>
</table>

Notes: model 1 use sentiment score provided by text mining approach; model 2 use sentiment score provided by deep learning approach

Conclusions
- The sentiment measures of MD&A of 10-Ks contain incremental information for financial misstatement prediction.
- Although not designed for financial-specific text, deep learning approach for textual analysis provides sentiment measures of MD&A with higher level of predictive power.
Blockchain Technology: A Framework and Application to Fraud Detection

Yunsen Wang and Alexander Kogan

Introduction

- During recent years, some of the big accounting firms (Deloitte, 2015; PwC, 2015) announced the projects that they would invest in the exploration of an emerging technology, blockchain, to improve audit efficiency and fraud detection effectiveness.

- Blockchain is a decentralized transaction database in cryptographic format distributed along a systematical network. A complete copy of blockchain contains all transactions executed on that network.

- This novel technology has broad applications, the famous one being Bitcoin invented by Nakamoto in 2008. The objective of that invention is to solve the double spending problem of digital currency by using peer-to-peer networks. Bitcoin has become very popular due to its reliance on decentralization.

- To use the blockchain technology for accounting and auditing purpose, the blockchain becomes an unforgeable distributed ledger owned by all business participants based on a common network protocol. A copy of a full chain contains all transactions in the business ecosystem. It is publically distributed, thus it prevents from tampering with transaction data.

Background

- Bitcoin was first invented by Nakamoto in 2008 with the purpose of solving the double spending problem of digital currency.

- In Nakamoto’s (2008) Bitcoin design, he defined the coin as a chain of digital signatures, which contains a hash of the entire previous transactions.

- To timestamp and encrypt the previous transactions, Merkle Tree and timestamp server are applied.

Data Collection and Preprocessing

- All the blockchain-based transaction data are collected from blockchain.info using Blockchain Wallet API by Python language.

- The average number of transactions per block shows that from 2009 to 2016 a growing number of transactions were encrypted in the chain of blocks.

- The number of unique addresses used shows that from 2009 to 2016 an increasing number of people have been using blockchain as a channel to transfer funds.

Summary and Future Research

- This study proposes a framework and development environment for blockchain technology and applications. It records and shares across a network financial or electronic assets and liabilities through entirely transparent updates of information.

- This new architecture reduces the intentional or unintentional misstatements and errors with very low cost. It delivers the assurance of data security and privacy, which prevents the intruder from stealing or destroying sensitive business databases. As all the transactions are logged on an Internet blockchain, external auditors or even regulators could inspect a corporation’s books in real time, and the audit firm can use this architecture to conduct batch auditing.

- In summary, the framework of the infrastructure is able to continuously monitor global economy, automatically conduct confirmation, timely detect the fraudulent transactions. By using this proposed system, auditors do not have to manually examine the audit samples. Instead, if the management committed fraud by tampering with the transaction data, this architecture will provide the auditor a disproof that shows the evidence of fraudulence. As a result, this audit system potentially enables auditors to detect fraud without examining all the transaction records.

Framework for Applications in Accounting and Auditing

- The framework of infrastructure:
  - (1) Private, public and hybrid chains connecting the world economy
  - (2) The value creation chain by zooming in and zooming out methods
  - (3) Multi-side chain for monetary exchange, product and service exchange

- The blockchain technology has many applications in accounting and auditing:
  - (1) Global economy continuous monitoring
  - (2) Timely and automatic confirmation
  - (3) Fraud detection

- Financial statement fraud detection:
  - (1) Inventory misstatement
  - (2) Embezzling and misappropriation
  - (3) Transactions backdate
  - (4) Revenue recognition

Data Collection and Preprocessing
Implementation of Data Analytics on Managerial Accounting Using Balanced Scorecard Framework

Deniz Appelbaum, Zhaokai Yan, Alexander Kogan and Miklos Vasarhelyi

Abstract
The nature of management accountants’ responsibility is changing to include organizational performance measurement and providing management with decision related information. The development in corporate information systems such as enterprise resource planning (ERP) systems has granted management accountants both data storage power and computational power. However, research shows that the nature and scope of managerial accounting has barely changed. This paper proposes a Managerial Accounting Data Analytics (MADA) framework based on the balanced scorecard theory in a business intelligence context. With MADA, three types of business analytics (descriptive, predictive, and prescriptive) are implemented into four corporate performance measurement perspectives in an enterprise system environment. Other related issues that affect the successful utilization of business analytics within a corporate-wide business intelligence (BI) system, such as data quality and data integrity, are also discussed.

Big Data and Business Analytics
Big data and business analytics now influence almost every aspect of major companies’ decision making, strategic analysis, and forecasting.

- **Descriptive:** Summarize what has happened and also form the basis of continuous monitoring alert systems (Dilla, Janvrin, and Raschke 2010)
- **Predictive:** Use data accumulated over time to make calculations of probable future events
- **Prescriptive:** Answers the question of what should be done given the descriptive and predictive analytics results (Bertsimas and Kallus, 2014)

Changes in Role of Managerial Accounting
- Management accountants serve the role of participating in strategic cost management for achieving long-term goals; implementing management and operational control for corporate performance measurement, planning for internal cost activity; and preparing financial statements (Brands 2015).
- Management accountants should make predictions including consequences for uncertainty and risk in decisions (Nielsen 2015).
- Management accountants should transgress the boundaries of management accounting and interact with non-accountants to solve the practical problems (Birnberg 2009).

ERP systems and Managerial Accounting
- ERP systems integrate all corporate information into one central database and allow information to be retrieved from different organizational sections (Dechow and Mouritsen 2005).
- ERP systems change the role of management accounting by providing management with access to relevant and real-time operational data for the purpose of decision making and management control.
- More data storage power and more data computational power.

Managerial Accounting Data Analytics (MADA) Framework

![Diagram of MADA Framework]

The BSC framework measures corporate performance from four perspectives:

- **Financial** (how do we look to shareholders?); **Customer** (how do customers see us?); **Internal business processes** (What must we excel at?); and **Learning and growth** (can we continue to improve and create value?). (Kaplan and Norton 1992)

Attributes for Successful Implementation
- Management accounting tasks as described in this framework could be regarded as an essential component of Business Intelligence (BI). BI systems may be regarded broadly as the management support systems for gathering, storing, accessing, and analyzing data for decision making (Chaudhuri et al. 2011).
- The analytical technique(s) selected by the accountant should not only be appropriate, but the data or big data selected for analysis should possess high quality attributes. In this sense, the data should be relevant, timely, believable, and useful to the end user. Poor quality data could have a substantial and negative economic impact on a business (Haug et al 2010).
Introduction to Risk Factor

Disclosures

- Beginning in 2005, public firms are required by the Securities and Exchange Commission (SEC) to report “Risk Factors” in order of importance in their 10-K item 1A (SEC.gov/answers). Specifically, risk factors describe where the problem lies and what could go wrong, so they provide important information to stakeholders such as auditors and investors for their decision making (Huang and Li, 2011).
- SEC has provided guidelines for risk categories for risk factors to be filed. For example, the risk categories include lack of an operating history, lack of profitable operations in recent periods, financial position, business or proposed business, and lack of a market for common equity securities or securities convertible into or exercisable for common equity securities, etc. (Mirakur, 2011). However, these are quite broad categories, and firms usually report more detailed risks, which are described in paragraphs and usually with a summary at the beginning of each risk factor. The problem is that there are no formal terms for these reported risks. As a result, similar risks might be expressed differently, making it difficult to compare the risks between firms and do risk analysis.

Sample Selection and Research Method

- This paper focuses on the retailing industry, which include firms with sic code starting with 52-59. For now we only use files of Walmart, Target, and Home Depot for a pilot study.
- Approach 1: based the Financial Times Lexicon (FT-lexicon), which contains 12,629 unique terms with definitions. A similarity score for each pair of risk factors and term definitions is calculated and recorded in a csv file. A similarity matrix is obtained. For the similarity matrix, terms with low similarity scores (smaller than 0.1) for all risk factors are deleted, and 4,387 terms remain in the final matrix. A factor analysis is conducted on the final matrix to identify similar risks.
- Approach 2: based on Microsoft Bing Search API. For each risk factor, all the noun phrases in the form of NBAR: (<NN.*|JJ>*<NN.*>*), or <NBAR><NBAR> are extracted from the summary sentences of risk factors using part-of-speech technique. The tf-idf score for each phrase (ignoring stop words) is calculated and for each file the top two phrases with highest tf-idf scores are recognized as important phrases. In order to group similar risk phrases together, Bing Search API is used to get the top 100 hit for each important phrase, and the phrases with same hit will be grouped together.

Future Work

- Refine the two approaches to generate more meaningful and accurate risk categories.
- Apply the method to the whole industry
- Evaluate the method

Risk Analysis Based on 10-K Item 1A

Kevin Moffitt and Yue Liu

Related Literature

Table 1. Studies involving risk categorization

<table>
<thead>
<tr>
<th>Author-year</th>
<th>Unit of analysis</th>
<th># of risk categories</th>
<th>Method of defining risk categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campbell et al. (2014)</td>
<td>item 1A</td>
<td>5</td>
<td>subjectively define risk categories</td>
</tr>
<tr>
<td>Huang and Li (2011)</td>
<td>individual risk factors</td>
<td>25</td>
<td>manually identify risk categories by reading 10-Ks</td>
</tr>
<tr>
<td>Mirakur (2011)</td>
<td>individual risk factors</td>
<td>29</td>
<td>manually identify risk categories by reading 10-Ks</td>
</tr>
<tr>
<td>Mulikineni (2013)</td>
<td>risk disclosures in Finland</td>
<td>5</td>
<td>manually identify risk categories</td>
</tr>
<tr>
<td>Bao and Datta (2014)</td>
<td>individual risk factors</td>
<td>25</td>
<td>predefined risk categories from Huang and Li (2011)</td>
</tr>
</tbody>
</table>

Table 2. Result for approach 1

Note: blue area stands for Walmart, red for Target, and orange for Home Depot.

Table 3. Result for approach 1-Walmart

<table>
<thead>
<tr>
<th># of similar risk terms from previous year</th>
<th># of new risk terms</th>
<th>list of new risk terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>2009</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>2010</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>2011</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>2012</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>2013</td>
<td>28</td>
<td>5</td>
</tr>
<tr>
<td>2014</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>2015</td>
<td>22</td>
<td>4</td>
</tr>
</tbody>
</table>

Note: this is the result based on the original risk terms extracted, and Bing Search API is not applied yet.

Future Work

- Refine the two approaches to generate more meaningful and accurate risk categories.
- Apply the method to the whole industry
- Evaluate the method

RUTGERS
Rutgers Business School
Newark and New Brunswick