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Continuous Data Level Auditing: Business Process 
Based Analytic Procedures in an Unconstrained Data 

Environment  
 

Abstract: 

This paper designs a  Continuous Data Level Auditing system utilizing business 
process based analytical procedures in a setting of unconstrained data availability and 
evaluates the system’s performance using real-world data sets extracted from the supply 
chain data warehouse of a large healthcare management firm. The first component of the 
proposed CA system utilizes automatic transaction verification to filter out exceptions, 
which are transactions violating formal business process rules. The second component of the 
system creates business process audit benchmarks which we denote as “Continuity 
Equations”, and define as stable probabilistic models of highly disaggregated business processes ─ the 
expectation models for process based analytical procedures. Our first objective is to 
investigate three probabilistic models that can serve as candidates for our continuity equation 
benchmarks: a Simultaneous Equation Model, a Vector Autoregressive model and a Linear 
Regression Model. Our second objective is to take advantage of the fundamental 
characteristic of a continuous audit system that assurance takes place close to the transaction 
date to design a set of online learning and error correction protocols for automatic model 
inference and updating. Our third objective is to examine the impact of the choice of the 
level of data aggregation that unconstrained data availability makes possible on anomaly 
detection performance. Using a seeded error simulation approach, we find that under most 
circumstances the use of real time error correction results in superior performance. We also 
find that each candidate audit benchmark model has its own strengths and weaknesses, and 
hence recommend that different continuity equation models can complement one another 
and be used concurrently in analytic procedures. Overall, our results indicate that when 
auditors have access to unconstrained data, the richness of that disaggregated data combined 
with the ability to make real time error correction makes error detection robust across a 
variety of expectations models, a key conclusion in support continuous data level auditing.  
 
Keywords: continuous auditing, analytical procedures, error correction. 
Data availability: The data is proprietary. Please contact the authors for details. 
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I. Introduction 

Continuous Auditing with Unconstrained Data Availability 
Business is in the process of a fundamental transformation towards the digital 

economy (Vasarhelyi and Greenstein, 2003). With companies having implemented 

networked integrated Enterprise Resource Planning (ERP) systems (such as SAP R/3, 

Oracle Applications, PeopleSoft) as their basic information infrastructure, management and 

control of organizations is shifting to a data-centric, process-oriented paradigm.2 The 

requirements of Section 404 of the Sarbanes-Oxley Act for rigorous controls over financial 

reporting also focus attention on how data is processed and used within the company, while 

the mining of customer and operational data is essential for company’s pursuing strategies of 

total customer satisfaction and total quality control.  

In response to these fundamental changes in the business environment, public 

accounting firms and internal auditing departments are now facing the opportunities and 

challenges associated  with the development and deployment of continuous auditing (CA) 

which is largely automated data intensive audit procedures with decreased latency between 

the transaction event and the provision of assurance.3 In the limit, the auditor would access 

real time streams of the entire universe of the company’s transactions rather than being 

restricted to a small sample gathered at a single moment of time (as in the annual stock take, 

to take the prototypical example). The feasibility of creating such a real time, automated 

audit methodology arises from the capability of the company’s ERP system to make 

available to auditors business data of far finer granularity in time and detail than has ever 

been cost effectively accessible before.4

Continuous auditing is becoming an increasingly important area in accounting, both 

in practice and in research, with conferences held around the world heavily attended by both 

academics and practitioners.5 The major public accounting firms all have CA initiatives 

under way, and major software vendors are also now aggressively developing and marketing 

                                                 
2 Vasarhelyi and Greenstein, 2003. 
3 The CICA/AICPA report defines CA as “a methodology that enables independent auditors to provide written assurance on 
a subject matter using a series of auditors’ reports issued simultaneously with, or a short period of time after, the occurrence of events 
underlying the subject matter.”  http://www.cica.ca/index.cfm/ci_id/989/la_id/1.htm
4 Vasarhelyi et al 2004.  
5 Alles et al 2006b. 

 2

http://www.cica.ca/index.cfm/ci_id/989/la_id/1.htm


CA software solutions (with SAP’s acquisition of Virsa being a recent example). 

PricewaterhouseCoopers (2006) in their recent survey state that “Eighty-one percent of 392 

companies responding to questions about continuous auditing reported that they either had a continuous 

auditing or monitoring process in place or were planning to develop one. From 2005 to 2006, the percentage 

of survey respondents saying they have some form of continuous auditing or monitoring process within their 

internal audit functions increased from 35% to 50%—a significant gain.”6 On the research front, the 

ongoing survey of the CA research literature by Brown et al. (2006) lists at least 60 papers in 

the area, ranging from behavioral research, to system design and analytical models and 

implementation case studies. 

Notably, however, there is a dearth of empirical research or case studies of new CA 

methodological developments due to the lack of data availability and difficulties of access to 

companies implementing CA. As a consequence, what is missing from both the academic 

and professional literature is a rigorous examination of how CA will impact the day to day 

practice of auditing, and in particular, how auditing will cope with the shift from data scarcity 

to data wealth, from periodic, archival to real time streaming data. This is a critical omission 

since much of existing audit practice is driven precisely by lack of data and the cost of 

accessing it: hence auditors do sampling, establish materiality thresholds for investigations 

and carry out analytic procedures before substantive testing so that they can focus only on 

likely trouble spots. Will any of these familiar practices survive in an age of digital firms with 

trivial costs of data storage, access and communication? Or to put it another way, can 

auditors afford to keep doing what are effectively short cuts, the justification for which has 

long since become obsolete?  

In our opinion, it is one thing for an auditor to choose to base audit procedures on 

limited data when data is very costly to obtain, and quite another to continue doing so when 

unconstrained data is readily available. It is the latter situation that the audit profession will 

increasingly find itself in until auditing procedures and systems are developed that can 

exploit the availability of timely and highly disaggregated data. In other words, the audit 

profession has to either answer the question of what it plans to do with all the data that it 

will soon be able to easily obtain, data which provides the level of detail an order of 

                                                 
6 CFO.com, June 26, 2006.  
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magnitude beyond the sampled, highly aggregated data that is the basis of much of the 

current audit methodology—or else, to explain why data is being thrown away unused. 

Certainly there are challenges in dealing with this quantity of data whose quality is 

variable, but the costs facing the auditor in processing these data have to be weighted against 

the potential benefits associated with the opportunity to free ride off the multi-billion dollar 

investment made by the firms in implementing the ERP systems, which make the provision 

of that data possible in the first place. It is incumbent on the auditors to develop 

methodologies that exploit that opportunity so that they can provide their clients with higher 

quality, more effective and efficient audits.  

Business Process Based Analytic Procedures 
Auditing is defined as “a systematic process of objectively obtaining and evaluating evidence 

regarding assertions about economic actions and events to ascertain the degree of correspondence between those 

assertions and established criteria and communicating the results to interested users.”7 Thus the scope of 

auditing is driven not only by what evidence is available, but also whether there exist 

benchmarks—the “established criteria”—to compare that audit evidence against. Those 

benchmarks provide guidance about what the data is supposed to look like when drawn 

from a firm operating without any anomalies.  

One of the key roles played by benchmarks in modern auditing is in the 

implementation of Analytic Procedures (AP), which Statement on Auditing Standards (SAS) 

No. 56 defines as the “evaluation of financial information made by a study of plausible relationships 

among both financial and nonfinancial data”. SAS 56 requires that analytic procedures should be 

performed during the planning and review stages of an audit, and recommends their use in 

substantive testing in order to minimize the subsequent testing of details to areas of detected 

concern. That sequence is dictated because manually undertaken tests of detail are so costly 

that they are resorted to only if the account balanced based AP tests indicate that there 

might be a problem.  Both the timing and nature of standard analytic procedures are thus 

brought into question in a largely automated continuous auditing system with unconstrained 

data.  

                                                 
7 Auditing Concepts Committee (1972, page 18). 
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The hypothesis driving our research is that making use of that unconstrained data it 

is possible to design analytic procedures which have an unprecedented degree of 

correspondence to underlying business processes. Business processes (BP), are defined 

(Davenport and Short 1990) as “a set of logically related tasks performed to achieve a defined business 

outcome”.  As the large investments in ERP systems indicate, business processes are 

considered today to be the fundamental atomic elements that make up a company, as much 

as the listing of its physical assets or employees might have been in earlier eras.8

Creating business process based benchmarks requires unconstrained data at a highly 

disaggregate level, far below the level of account balances that are used in most analytic 

procedures today, such as ratio analysis or comparisons with prior year financials. Testing 

the content of a firm’s data flow against such benchmarks focuses on examining both 

exceptional transactions and exceptional outcomes of expected transactions. Ideally CA 

software will continuously and automatically monitor company transactions, comparing their 

generic characteristics to observed/expected benchmarks, thus identifying anomalous 

situations. When significant discrepancies occur, alarms will be triggered and routed to the 

appropriate stakeholders.  

The objective of this project then is to explore the benefits of using business process 

based analytic procedures to create a system of continuous data level auditing.  

Continuity Equations 
The first component of the proposed CA system utilizes automatic transaction 

verification to filter out exceptions, which are transactions violating formal BP rules. The 

second component of the system creates business process audit benchmarks which we 

denote as Continuity Equations (CE), and define as stable probabilistic models of highly 

disaggregated business processes, as the expectation models for process based analytical 

procedures. Continuity Equations are commonly used in physics as mathematical 

expressions of various conservation laws, such as the law of the conservation of mass.9 In 

the continuity equation metaphor, each business process is analogous to a control volume 

made up of a variety of transaction flows, or business activities. If transaction flows into and 

                                                 
8 Porter 1996. 
9 For  a  control  volume  that  has  a  single  inlet  and  a  single  outlet,  the  principle  of conservation of mass 
states that, for steady-state flow, the mass flow rate into the volume must equal the mass flow rate out.   
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out of each BP are equal, the business process would be in a steady-state, free from 

anomalies. Otherwise, if spikes occur in the transaction flows, the steady-state of the 

business process cannot be maintained.10

The object of having audit benchmarks consisting of CEs is to capture the dynamics 

of the fundamental business processes of a firm, but since those processes are unobservable, 

in practice the CE is a data driven statistical estimate. Which probabilistic representation of 

those underlying business processes provides the CE that is most effective as an audit 

benchmark is an empirical issue. Once identified, CEs are applied to the transaction stream 

to detect statistical anomalies possibly indicating business process problems. BP metrics used 

in CEs can be both traditional financial metrics (such as the dollar amounts of daily 

purchases) which are commonly used in auditing, and physical metrics (such as the quantity 

of items ordered, or the number of purchase orders placed) which are more common in 

engineering and statistical process quality control. 

For CE based APs to be adequate to meet the needs of the CA environment, they 

have to satisfy a number of important criteria: 

1. First, the process of creating continuity equations to serve as audit 

benchmarks in the AP tests should be largely automated and the CE models 

should be self-adaptive, requiring as little human intervention as possible. It 

is simply not feasible for auditors to manually select expectations models 

when dealing with highly disaggregated data without succumbing to data 

overload. Further, new data are continuously fed into the CA system through 

the firm’s ERP systems. An AP model for CA must be able to assimilate 

additional information contained in the new data feeds, and adapt its CE 

benchmarks continuously.  

2. Second, given that the ultimate objective for auditors applying AP is to detect 

anomalies and then to perform detailed testing to resolve these detected 

anomalies, AP models should be able to effectively and efficiently detect 

errors. Since highly disaggregated data is rarely examined in traditional audit 

practice, and certainly was not examined at the depth that we do in this 

                                                 
10 The familiar accounting equation linking the balance sheet to the income statement—assets = liabilities + 
owners equity—is an example of a continuity equation, and verifying that it holds is one of the central tasks of 
the financial audit.  
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project, the measure of success for new CA-based AP tests is open to debate. 

There is no obvious “horse race” to be run, comparing the new versus the 

traditional AP procedures. Besides, we believe that traditional AP would still 

be used in the planning and final review stages of an audit even when CA is 

widely implemented. Hence, we focus on internal validity, examining whether 

AP tests that use highly disaggregated data are effective in detecting inherent 

and seeded errors in that data.  Anomaly detection is why auditors utilize AP 

tests in the first place, and demonstrating effectiveness at this task sufficiently 

justifies our research initiative. 

3. Further, to improve error detection capability, the AP models should be 

utilized to correct any detected errors as soon as possible to ensure that the 

subsequent predictions are based on the correct data as opposed to the 

erroneous ones. 

Having developed this theoretical framework, we take the important next step of 

validating the proposed CA system design using a large data set of the supply chain 

procurement cycle data provided by a large healthcare management firm.  This allows us to 

examine what form the CEs will take in a real world setting and how effective they are in 

detecting errors.  

While the data is not analyzed in real time, the extent of the data we use mimics what 

a working data level CA system would have to deal with and it provides a unique testing 

ground to examine how audit procedures will adapt to deal with unconstrained data 

availability. Indeed, even when CA is ubiquitous, it is unlikely that the audit system will be 

able to “tap” the ERP data warehouse in real time. In order to maintain the integrity of the 

data base and to avoid slowing down priority operational access to it, the data will be fed in 

batches to the CA system. But even daily downloads undertaken overnight will still provide a 

far reduced latency between transaction and assurance than anything available today. To that 

extent, the fact that our project uses archived as opposed to streaming data is irrelevant 

because the key is that we have access to any raw data that we wish on any process that want 

to model at whatever level of detail that is deemed appropriate in order to create CE based 

audit benchmarks and undertake the AP tests that will characterize continuous data level 

auditing.   
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The unconstrained data is used to identify three key business processes in the 

procurement cycle: the ordering process, the receiving process, and the voucher payment 

process. The CE models of these three processes are estimated using the statistical 

methodologies of linear regression, simultaneous equation modeling, and vector 

autoregressive models. We design a set of online learning and error correction protocols for 

automatic model inference and updating. We use a seeded error simulation study to compare 

the anomaly detection capability of the discussed models. We find that under most 

circumstances the use of real time error correction results in superior performance.  We also 

find that each type of CE models has its strengths and weaknesses in terms of anomaly 

detection. These models can be used concurrently in a CA system to complement one 

another. Finally, we demonstrate that the use of disaggregated data in CE can lead to better 

anomaly detection when the seeded errors are concentrated, while yielding no improvement 

when the seeded errors are dispersed.  

The remainder of this paper is organized as follows. Section 2 provides a review of 

the relevant literatures in auditing, CA, business processes and AP upon which our work is 

based and to which the results of the paper contribute. Section 3 describes the design and 

implementation of data-oriented CA systems, Section 4 discusses the critical decision choice 

of how to aggregate the transactional data, and the CE model construction using three 

different statistical methods, with Section 5 comparing the ability of the CE-based AP tests 

in detecting anomalies under various settings. Section 6 discusses the results, identifies the 

limitations of the study, and suggests future research directions in this domain. Section 7 

offers concluding comments.  

II. Literature Review 
This paper draws from and contributes to multiple streams of literature in system 

design, continuous auditing and analytical procedures.  

Continuous Auditing 
The seminal papers on continuous auditing are Groomer and Murthy (1989) and 

Vasarhelyi and Halper (1991). They pioneered the two modern approaches towards 

designing the architecture of a CA system, the embedded audit modules and the control and 

monitoring layer, respectively. The literature on CA since then has increased considerably, 

ranging from the technical aspects of CA (Kogan et al. 1999; Woodroof and Searcy 2001; 
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Rezaee et al. 2002; Murthy 2004; Murthy and Groomer 2004, etc.) to the examinations of the 

economic drivers of CA and their potential impact on audit practice (Alles et al. 2002 and 

2004; Elliott 2002; Vasarhelyi 2002; Searcy et al. 2004). Kogan et al. (1999) propose a 

program of research in CA. In the discussion of the CA system architecture they identify a 

tradeoff in CA between auditing the enterprise system versus auditing enterprise data. A 

recent study by Alles et al. (2006) develops the architecture of a CA system for the 

environment of highly automated and integrated enterprise system processes, and shows that 

a CA system for such environments can be successfully implemented on the basis of 

continuous monitoring of business process control settings. This paper focuses on the 

enterprise environment in which many business processes are not automated and their 

integration is lacking, and proposes to design a CA system architecture based on data-

oriented procedures. In this development, it utilizes the approach of Vasarhelyi et al. (2004) 

that introduces four levels of CA assurance having different objectives. More specifically, 

this paper develops a CA methodology for the first and third CA levels: transaction 

verification and assurance of higher-level measurements and aggregates.11  

The unavailability of data to researchers is the likely cause of a lack of empirical and 

case studies on CA in general and on analytical procedures for CA in particular. This paper 

contributes to the CA literature by providing empirical evidence to illustrate the advantages 

of CA in real-time problem resolution. More specifically, we show that potential problems 

can be detected in a more timely fashion, at the transaction stream level as opposed to the 

account balance level.  Traditionally, analytical procedures are applied at the account balance 

level after the business transactions have been aggregated into account balances. This would 

not only delay the detection of potential problems but also create an additional layer of 

difficulty for problem resolution due to a large number of transactions that are aggregated 

into accounting numbers. The focus on auditing the underlying business processes alleviates 

this problem by utilizing much more disaggregated information in continuous auditing.  

Enterprise Business Process Modeling and Continuity Equations 
In his seminal papers, McCarthy (1979 and 1982) proposes the Resource-Event-

Agent (REA) paradigm for representing accounting objects in a shared data environment. 

Geerts and McCarthy (1997, 2005) extend and refine the REA accounting model to engineer 

                                                 
11 The other two levels are compliance and judgment verification.  
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business processes and tasks by decomposing the enterprise value chain into a number of 

interrelated of business processes. Those processes that involve inflows and outflows of 

economic resources are called economic processes. Each economic process contains at least 

two related economic events: “a decrement event that consumes the inputted resource and 

an increment event that acquires the outputted resource.”  

We follow the REA approach which constructs the enterprise business model 

starting with the economic processes. We develop a CA data-oriented methodology around 

the key economic processes and the economic resources, and illustrate this methodology on 

the example of the supply chain of the firm. This approach can also be viewed as an 

extension to CA of the modern business process auditing approach proposed by Bell et al. 

(1997). They advocate a holistic approach to auditing an enterprise: structurally dividing a 

business organization into various business processes (e.g. the revenue cycle, procurement 

cycle, payroll cycle, and etc.) for the auditing purpose. They suggest the expansion of the 

focus of auditing from business transactions to the routine activities associated with different 

business processes.  

Building on the REA perspective, Vasarhelyi and Halper (1991) are the pioneers to 

taking advantage of online technology and modern networking to develop a procedure for 

continuous auditing. Their study introduces the concept of continuous analytical monitoring 

of business processes, and discusses the use of key operational metrics and analytics to help 

internal auditors monitor and control AT&T’s billing system. They use the operational 

process auditing approach and emphasize the use of metrics and analytics in continuous 

auditing. This is the first study to adopt the term “Continuity Equations” which is used in 

modelling of how billing data flowed through business processes and accounting systems at 

AT&T. The choice of the expression by Vasarhelyi and Halper is clearly driven by the fact 

that as with the conservation laws in physics, in a properly functioning accounting control 

system there should not be any “leakages” from the transaction flow. 

This paper continues the application of the concept of CE to model the relationships 

between the metrics of key business processes that make up the REA view of the firm, while 

building on the original implementation of CA as described in Vasarhelyi and Halper (1991). 

The broader implications of their model have been obscured in the subsequent focus of the 

CA literature on technology enablers and the frequency of reporting. But in a very real sense, 
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attaining the full potential of CA requires the utilization of not only of its well known 

capability of decreasing audit latency, but also of taking advantage of unconstrained data 

availability to create audit benchmarks that are not only timelier but provide a more accurate, 

detailed and dynamic benchmark of fundamental business processes. In that sense CE based 

continuous auditing brings the worlds of auditing and REA into closer alignment.  

Analytical Procedures 
Analytic procedures reduce the audit workload and cut the audit cost because they 

help auditors focus substantive tests of detail on material discrepancies. In applying analytical 

procedures an auditor first develops an expectations model to make a prediction about the 

value of an important business metric such as an account balance. Then, the auditor 

compares the predicted value with the actual value of the metric. Finally, if the variance 

between the two values exceeds a pre-established threshold, an alarm is triggered leading to 

further investigation by the auditor of the discovered anomaly.  

There are extensive research studies on analytical procedures in auditing. Many 

papers discuss various analytical procedures ranging from financial ratio analysis to linear 

regression modeling that focus on highly aggregated data such as account balances (Hylas 

and Ashton 1982; Kinney 1987; Loebbecke and Steinbart 1987; Biggs et al. 1988; Wright and 

Ashton 1989; Hirst and Koonce, 1996). The percentages of errors found using such 

analytical procedures are usually not high, varying between 15% and 50%. Only a few papers 

examine analytical procedures for more disaggregated data. Dzeng (1994) compares 8 

univariate and multivariate AP models using quarterly and monthly financial and non-

financial data of a university, and concludes that disaggregated data yields better precisions in 

a multivariate time-series based expectations model. Other studies also find that applying AP 

models to higher frequency monthly data can improve analytical procedure effectiveness 

(Chen and Leitch 1998 and 1999, Leitch and Chen 2003). By contrast, Allen et al. (1999) use 

both financial and non-financial monthly data of a multi-location firm and do not find any 

supporting evidence that geographically disaggregate data can improve analytical procedures. 

In this study we build a data level CA system which utilizes CE based analytical 

procedures applied to even more highly disaggregate daily metrics of business processes. We 

investigate several different probabilistic models of those business processes to serve as our 

CE based audit benchmark:  the Simultaneous Equation Model (SEM), the Vector 
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Autoregressive Models (VAR) and the Linear Regression Model (LRM). The use of SEM in 

analytical procedures has been examined by Leitch and Chen (2003), but only using monthly 

financial statement data. Their finding indicates that SEM can generally outperform other 

AP models including Martingale and ARIMA. 

As far we can ascertain, the Vector Autoregressive Model has not been fully explored 

in the auditing literature. There are a number of studies utilizing univariate time series 

models (Knechel 1988; Lorek et al. 1992; Chen and Leitch 1998; Leitch and Chen 2003), but 

only one, by Dzeng (1994), which uses VAR. Dzeng concludes that VAR is better than other 

modeling techniques in generating expectation models, and he specifically recommends 

using Bayesian VAR (BVAR) models.  The computational complexity of VAR used to 

hamper its application as an AP model, since appropriate statistical tools were not readily 

available in the past. However, the recent developments in statistical software facilitate the 

application of this sophisticated model.12 The VAR model can not only represent the 

interrelationships between BPs but also capture their time series properties. Although (to the 

best of our knowledge) VAR has been discussed only once in the auditing literature, studies 

in other disciplines have either employed or discussed VAR as a forecasting method 

(Swanson 1998; Pandher 2002). 

III. Design and Implementation of  a Continuous Data Level 
Auditing System 

The objective of a CA system designed in this study is to provide close to real-time 

assurance on the integrity of certain enterprise business processes. As in conventional 

auditing, such a system can adopt either one of two different types of procedures: those 

monitoring business process controls and those analyzing business process transactions. As 

Alles et al. (2006) indicate, business process control monitoring requires that the client 

possesses a modern integrated IT infrastructure, and faces challenges even then. They also 

show that even today few firms have the kind of tight, end to end data integration that 

continuous control monitoring depends upon. This paper focuses on designing a CA system 

for the much more common enterprise environments in which data is derived from multiple 

legacy systems that lack centralized and automated controls. This lack of a control based 

                                                 
12 Starting with version 8, SAS (Statistical Analysis System) allows users to make multivariate time series 
forecasts using a very sophisticated VARMAX procedure. 
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monitoring system is why the proposed CA system is data-oriented instead, and the 

provision of assurance based on verifying transactions and business process based analytic 

procedures.  

The architecture of the designed data level CA system is driven by the procedures it 

has to implement. While the subject matter it deals with is quite different from that in 

conventional auditing, one can view its procedures as analogous to automated substantive 

audit procedures, including transaction testing and analytical procedures. Therefore, the two 

main components of the CA system are those executing automatic transaction verification 

and testing using CE based automatic analytical processes.  

[Insert Figure 2 here] 

The implementation of the transaction verification component of the CA system is 

based on identifying business process rules and formalizing them as transaction integrity and 

validity constraints. Every recorded transaction is then checked against all the formal rules in 

the component, and if it violates any of the rules, then the transaction is flagged as an 

exception. Every exception generates a CA alarm in the CA system, which it sends to the 

appropriate parties for resolution. Since the alarm specifies which formal business process 

rules are violated by the exception, resolving exceptions should be a fairly straightforward 

task. Once the transaction data is verified it is in an acceptable form to be used to develop 

the CE based audit benchmarks for AP. 

Unconstrained Data Provision 
Enterprise systems that support key business processes routinely collect business 

process data in the unfiltered highly disaggregated form. If the enterprise has implemented 

an integrated ERP system, then BP data is readily available in the ERP central database. 

However, the most common current situation is that the enterprise system landscape 

consists of a patchwork of different systems, many of which are legacy ones and are often 

file-based. In such enterprise systems direct real-time access to business process data is 

highly problematic, if at all possible at any reasonable expense of time and effort. Therefore, 

a data-oriented CA system usually cannot be cost-effectively deployed in such environment 

unless the enterprise deploys an overlay data repository commonly known as “Business Data 

Warehouse”. This is a relational database management system specially designed to host 

business process data provided by the other enterprise systems, including the legacy cycle-
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focused ones (such as sales processing or accounts receivable). While the main functionality 

of a data warehouse is online analytical processing, the CA system developed here relies only 

on its function as the global repository of business process data. The availability of 

unconstrained business process data, meaning that the auditor can access any raw, unfiltered 

and disaggregated data that is required for the construction and operation of CE based AP 

tests is the critical enabler of the proposed CA system. 

Data Description  
Our simulated implementation of the data-oriented CA system focuses on the 

procurement-related business processes and utilizes the data sets extracted from the data 

warehouse of a healthcare management firm with multi-billions of dollars in assets and over 

two million employees. The firm is a major national provider of healthcare services, with a 

network composed of locally managed facilities that include numerous hospitals and 

outpatient surgery centers all over the US and overseas. A key strategic driver for the firm is 

the management of their supply chain which provides everything from paper towels to 

heart/lung machines to their various operating units through dozens of warehouses spread 

throughout the United States.  

We were approached by the firm’s Internal Audit in 2003 to consider how to 

improve the assurance they could provide over their supply chain, focusing on sample of 

warehouses in one region of the US. What they were willing to provide was extracts from 

their transactional database, which while only a sample limited in time and geography, still 

encompassed megabytes of data, several orders of magnitude more detailed than anything 

typically examined in a standard audit.  

The data sets include all procurement cycle daily transactions from October 1st, 2003 

through June 30th, 2004. The number of transaction records for each activity ranges from 

approximately 330,000 to 550,000. These transactions are performed by ten facilities of the 

firm including one regional warehouse and nine hospitals and surgical centers.  The data was 

first collected by the ten facilities and then transferred to the central data warehouse in the 

firm’s headquarters.  
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Transaction Verification 
Following the BP auditing approach, as the first step, we identify the following three 

key business processes in the supply chain procurement cycle: ordering, receiving, and 

voucher payment, which involve six tables in our data sets.  The economic resources 

involved include facility items (inventory) and voucher payments (cash). 

[Insert Figure 2 here] 

This data is uploaded to the data warehouse for the underlying legacy systems, which 

are lacking many automated controls present in modern ERP systems. Not surprisingly, 

then, there are numerous data integrity issues, which have to be identified by the transaction 

verification component of the CA system before the data is suitable for AP testing. To 

simulate the functionality of the transaction verification component, we formally specify 

various data validity, consistency, and referential integrity constraints, and then filter through 

them all the available transactions. 

Two categories of erroneous records are removed from our data sets: those that 

violate data integrity and those that violate referential integrity. Data integrity violations 

include but are not limited to invalid purchase quantities, receiving quantities, and check 

numbers.13 Referential integrity violations are largely caused by many unmatched records 

among different business processes. For example, a receiving transaction cannot be matched 

with any related ordering transaction. A payment for a purchase order cannot be matched 

with the related receiving transaction. Before we can build any analytical model, these 

erroneous records must be eliminated.  This removal simulates the action of the transaction 

verification component of the CA system. Note that in a very tightly integrated enterprise 

environment such transactional problem would have been prevented by the client’s ERP 

system. 

An additional step in the transaction filtering phase is to delete non-business-day 

records. Though we find that sporadic transactions have occurred on some weekends and 

holidays, the number of these transactions accounts for only a small fraction of that on a 

working day. However, if we leave these non-business-day records in our sample, these 

records would inevitably trigger false alarms simply because of low transaction volume. 

                                                 
13 We found negative or zero numbers in these values which can not always be justified by our data provider. 
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While the simulated verification of transactions relied on fairly straightforward 

business rules described above, the client firm considered that just the exceptions identified 

at this stage were a major source of value added from the project. It is to be anticipated that 

as legacy systems are gradually superseded by the firm’s ERP system with stronger 

automated controls, the transaction verification component of the CA system will be 

catching fewer and fewer problems. Conversely, the fact that any were caught at all indicate 

the value of this limited form of automated continuous auditing, since these transaction level 

errors had escaped detection from the standard practices being employed by either the firm’s 

internal or external auditors, practices which obviously were not designed to cope with data 

universality.  

Business Process based Analytic Procedures 

The transaction verification stage of continuous data level auditing is based on user 

specified rules designed to catch obvious errors in individual business events. Whatever 

value added this step may provide, catching such errors is hardly the primary purpose of 

auditing. Rather, the object of analytic procedures is the “study of plausible relationships among 

both financial and nonfinancial data” in order to detect anomalous patterns in the firm’s 

performance and the way in which it is reported.  

The implementation of the AP component of the CA system first requires creation 

of the process level continuity equations which can serve as benchmarks for the AP tests.  

Instead of testing transaction by transaction for obvious errors, the AP test contrasts the 

stream of data against a probabilistic model of how that data should look like if there were 

no untoward events happening in the firm. Such models usually take the form of statistically 

stable relationships between business process metrics (and possibly some exogenous 

factors). Every business process metric is calculated over a subset of transactions 

corresponding to intervals along some important business process dimensions (such as time, 

region, product, customer, etc). Since the relationship between the metrics holds only 

probabilistically, the model also has to specify the acceptable range of variation of the 

residuals. An anomaly arises when the observed values of the metrics results in residuals 

which fall outside this acceptable range. Every anomaly generates a CA alarm in the CA 

system, which it sends to the appropriate parties for resolution. In contrast with an 
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exception, which is associated to an individual transaction, an anomaly is associated with a 

subset of transactions used to calculate the values of the metrics. Therefore, the resolution of 

an anomaly is not straightforward. Moreover, an anomaly is not necessarily indicative of a 

problem, since it can simply be due to statistical fluctuation. 

Note that in the workflow of the proposed data-oriented CA system the first stage of 

processing is the verification of transactions. It has to be contrasted with the fact that in 

conventional auditing analytical procedures are used first to identify areas of concern, and 

then transaction testing is focused on the identified risky areas. The rationale for this 

sequence is that it makes it possible to reallocate the sample counts so as to increase either 

the effectiveness or the efficiency of substantive testing. Since in a CA system the 

verification of transactions are automatically performed on the entire population of data 

without the need for sampling. Therefore, the transaction verification component of the CA 

system processes every transaction in the business process stream, and serves as a filter 

screening out the identified exceptions. Then this filtered stream of transactions is further 

processed by the analytical procedures component of the system to ascertain the absence of 

anomalies. Thus, the CA system reverses the sequence of procedures of traditional auditing 

to capitalize on the capabilities of modern IT to verify the entire stream of business 

transactions against the formalized set of process rules.  

The rationale for analytic procedures in the proposed CA architecture is two-fold. 

First, one can never assume that the set of formalized business process rules completely 

defines the set of constraints business transactions have to satisfy. Given this possibility, 

analytical procedures serve as the second line of defense. Anomalies identified by the CA 

system can signal the presence of likely abnormal transactions that are not discovered by the 

user defined rules of the transaction verification filter. This is an indication either of some 

exceptional event, such as fraud, or if the anomaly occurs often enough, of the need to 

update the rule set of the transaction verification system. 

Second, analytical procedures can identify certain business process irregularities that 

cannot be caught in principle by the transaction verification component because they are not 

due to the violation of any business rules. At this stage of this research project into 

continuous data level assurance we are only investigating the efficacy of CE based AP tests 

in detecting generic errors, as we explain below. But once that is established, the next step is 
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to develop the equivalent of the rules in the transaction verification stage, by identifying 

particular patterns at the data stage that correspond to particular areas of concern to the 

auditor. Obvious issues to examine include round tripping, channel stuffing and other well 

known cases of accounting fraud.  

In this specific area of procurement, there is a possibility that a batch of purchase 

orders may be destroyed without any notification by the delivery mechanism external to the 

enterprise. In this case, the unexpected drop-off in item deliveries can be identified as 

anomalous by the analytical procedures, which will thus provide the precious early warning 

of a process problem. Another procurement-related example has to do with regular 

payments of vendor invoices to take advantage of early payment discounts. Then, the 

process rules may not require payments before the invoice due date, while the practice is to 

pay early. If, say, due to a staffing change in the accounts payable department, the early 

payments are not processed on time, there will be no violation of process rules, but the 

analytic procedures would still be able to signal an anomaly after identifying an unexpected 

decline in the number of payments processed. Human investigations of anomalies identified 

by the analytic procedures should be able to discern the root cause of the anomalies (if any) 

and initiate the necessary corrective actions. 

Much more research is needed to create a library of anomalous business patterns that 

can be loaded into the CA system and serve to direct human auditors to particular problem 

areas. Before that can happen, we must first show that it is possible to create process level 

benchmarks, the continuity equations, in the first place.  

IV Models of  Continuity Equations 
Following the BP auditing approach, we have identified three key business processes 

for our sample firm which include ordering, receiving, and voucher payment processes. The 

analytical procedures component of the CA system is based on benchmarks which model 

the interrelationships between these processes. A critical issue in modeling business 

processes analytically is the choice of BP metrics. The traditional accounting choice has been 

the use of financial measures (e.g., dollar amounts), driven in the first place by the reliance 

on ledger entries as the primary source of data. In an unconstrained data environment, 

however, modeling business processes can also be undertaken using  use of other types of 

nonfinancial metrics such as physical measurements or document counts. The dollar 

 18



amounts of each transaction or the number of transactions processed can also be used. In 

our study the transaction item quantity is selected as our BP metric. There is, of course, no 

conceptual reason why analytical procedures cannot utilize multiple metrics to examine 

transaction flows. Auditing on different metrics would enable auditors to detect a more 

diverse set of patterns of firm behavior.14  

Once the BP metrics are chosen, the next step is to determine the appropriate degree 

of aggregation at which it is appropriate to conduct the AP test, and hence, the 

characteristics of the data used to construct the CE based benchmark.   

Data Aggregation 

The main argument against using aggregated data is that it inevitably leads to a loss 

of information about individual transactions. But aggregation can also make it possible to see 

the so called “big picture”. The debate over how and to what extent to aggregate 

transactional data is as old as accounting itself, and its use of ledger accounts as a means of 

summarizing data. The key difference is that in an unconstrained data environment and with 

the technical ability to process such large data sets, the degree and nature of aggregation is 

now a choice that is open to auditors to make, rather than one forced on them by 

measurement constraints.  

The main statistical argument for aggregation is that it can reduce the variability 

observed among individual transactions. For example, the transaction quantity can differ 

greatly among individual transactions, as well as the lag time between order and delivery, and 

delivery and payment. By aggregating the individual transactions, this variance can be 

significantly reduced, thus allowing more material anomalies to be detected more effectively. 

The fluctuations among individual transactions can also be smoothed by aggregating them, 

which facilitates the construction of a stable model. Otherwise, it would be infeasible to 

derive a stable model based on data sets with large variances because the model would either 

trigger too many alarms or lack the detection power. On the other hand, if individual 

                                                 
14 We need to perform audits on different metrics besides financial numbers. For example, the Patriot Act 
requires that banks should report the source of money for any deposit larger than US$100,000 by its client. 
However, the mandatory reporting controls can be by passed by dividing the deposit over $100,000 into several 
smaller deposits. Even though the deposit amount each time is under the limit, the number of total deposits is 
over the limit. Auditors can only catch such fraudulent activity by using the number of deposit transactions as 
one of the audit metrics.  
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transactions are aggregated over a longer time period such as a week or a month, then the 

model would fail to detect many abnormal transactions because the abnormality would be 

mostly smoothed out by the longer time interval. Thus, the inescapable tradeoff that the 

more aggregated the metrics are, the more stable the analytical relationships are likely to be 

at a price of more missed detection. In the mean time, any anomaly involving a metric with 

higher level of aggregation, requires a more extensive (and expensive) investigation of the 

larger subpopulation of transactions if an alarm is triggered. Daily and weekly aggregations 

used in our analysis are natural units of time that should result in a reasonable trade-off 

between these two forces. Aggregation can be performed on other dimensions besides the 

time interval, and the choice of the aggregation levels has obviously to be made on a case by 

case basis considering the inherent characteristics of the underlying transactional data.  

We use intermediate aggregates of transactions, such as aggregates of transactions of 

different units in the enterprise, aggregates of transactions with certain groups of customers 

or vendors. This is a novelty since traditional substantive testing is done either at the most 

disaggregated level, or at the most aggregated level. Substantive tests of transactions are done 

at the most disaggregated level of individual transactional data, but this is done in order to 

verify the correctness of that individual transaction rather than to gain a perspective of the 

overall business process. Tests of details of account balances are obviously applied at the 

most aggregated level. All standard analytical procedures are used for analyzing the account 

balances or the largest classes of transactions. As our results show, analysis of intermediate 

aggregates can provide more confidence when making audit judgments about anomalies and 

give the auditor a means of thinking about the underlying business process as a whole. 

Summary statistics of the data used in the analysis are presented in Table 1. 

[Insert Table 1 here]

As discussed above, we selected transaction item quantity as the primary metric for 

testing as opposed to dollar amounts, and we did so for two reasons: First, we want to 

illustrate that CA can work efficiently and effectively on operational (non-financial) data; 

second, in our sample set dollar amounts contain noisy information including sales discounts 

and tax. We aggregate the transaction quantities for the ordering, receiving, and voucher 

payment processes respectively. After excluding weekends and holidays and several 
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observations at the beginning of the sample period to reduce noises in the sample, we have 

180 days of observations in our data sets for each business process. 

Continuity Equation Candidates: Simultaneous Equation Model 
We investigate three probabilistic models that can serve as candidates for our 

continuity equation benchmarks of the firm’s supply chain processes: a Simultaneous 

Equation Model (SEM), a Vector Autoregressive (VAR) model and a Linear Regression 

Model (LRM). The SEM can model the interrelationships between different business 

processes simultaneously while the linear regression model can only model one relationship 

at a time, but the latter is less computationally demanding. In SEM each interrelationship 

between two business processes is represented by an equation and the SEM-based CE 

model consists of a simultaneous system of two or more equations which represent the 

business processes that make up the organization.  

In SEM and LRM we specify the daily aggregate of order quantity as the exogenous 

variable while the daily aggregates of receiving quantity and payment quantity are 

endogenous variables. Time stamps are added to the transaction flow among the three 

business processes. The transaction flow originates from the ordering process at time t. 

After a lag period Δ1, the transaction flow appears in the receiving process at time t+ Δ1. 

After another lag period Δ2, the transaction flow re-appears in the voucher payment 

processes at time t+Δ2. Using the SEM methodology to model these processes yields the set 

of equations:15

 1 1

1 2 1 2

(   )      a *(   )    
(   )   b*(   )

t t

t t

qty of receive qty of order
qty of vouchers qty of receive

ε
ε
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+Δ +Δ +Δ

= +⎧
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Our next step in constructing the simultaneous equation model is to estimate the 

lags. Initially, we used the mode and mean and other combinations of lag estimates. Our 

results indicate that the mode estimate works best among all estimates for the simultaneous 

equation model. Therefore, our estimated model is: 

-1 1

-1 2

  a *
  b*

t t

t t

receive order
voucher receive

ε
ε

= +⎧
⎨ = +⎩

 

                                                 
15 Alles et al. 2006b develop these statistical CE relationships from the underlying theoretical business 
processes of the firm’s supply chain. In this paper adopt a purely statistical approach towards CE creation.  
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Where 

order  = daily aggregate of transaction quantity for the purchase order process 

receive = daily aggregate of transaction quantity for the receiving process 

voucher = daily aggregate of transaction quantity for the voucher payment process 

t = transaction time 

We divide our data set into two groups. The first group consisting of the first 100 

days is categorized as the training set and used to estimate the model. The second group 

consisting of the remaining days is categorized as the hold-out set and used to test our 

model. Our estimated simultaneous equation model estimated on the training set is as 

follows: 

  -1 1

-1 2

 0.482*   
  0.816*   

t t

t t

receive order e
voucher receive e

= +⎧
⎨ = +⎩

The R squares for the equation are 0.73 and 0.79 respectively, which indicate a good 

fit of data for the simultaneous equation model. However, we have also realized some 

limitations associated with SEM. First, the lags have to be separately estimated and such 

estimations are not only time-consuming but also prone to errors. Second, the SEM is a 

simplistic model. Each variable can only depend on a single lagged value of the other 

variable. For example, vouchert can only depend on receivet-1 even though there is a strong 

likelihood that it can also depend on other lagged value of the receive variable, or even the 

lagged value of the order variable. Due to these limitations, we need to develop a more 

flexible CE model.  

Continuity Equation Candidates: Vector Autoregressive Model 
We continue to follow the BP auditing approach and use daily aggregates of 

transaction item quantity as audit metric to develop the VAR models. However, unlike in the 

case of SEM, no lag estimation is necessary. Only the maximum lag period needs to be 

specified. All possible lags within the period can be tested by the model. We select 13 days as 

the maximum lag because 90% of the lags of all the individual transactions fall within this 

time frame. Our basic multivariate time series model is expressed as follows: 

 ordert = Φro*M(receive)+ Φvo*M(voucher)+ εo 
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 receive t = Φor*M(order)+ Φvr*M(voucher)+ εr 

 vouchert = Φov*M(order)+ Φrv*M(receive)+ εv 

M (order)= n*1 vector of daily aggregate of order quantity  

M (receive)= n*1 vector of daily aggregate of receive quantity  

M (voucher)= n*1 vector of daily aggregate of voucher quantity  

Φ = corresponding 1*n transition vectors 

Again we split our data set into two subsets: the training set and the hold-out set. 

SAS VARMAX procedure is used to estimate the large VAR model. Despite the fact that 

this model is a good fit to our data sets, the predictions it generates for the hold-out sample 

have large variances.16 In addition, a large number of the parameter estimates are not 

statistically significant. We believe the model suffers from the over-fitting problem. 

Therefore, we apply step-wise procedures to restrict the insignificant parameter values to 

zero and retain only the significant parameters in the model in each step. Then, we estimate 

the model again. If new insignificant parameters appear, we restrict them to zero and re-

estimate the model. We repeat the step-wise procedure several times until there are no 

insignificant parameters appearing in the mode, resulting in a subset VAR model. One of our 

estimated subset multivariate time series model is expressed as: 

ordert = 0.24*order t-4 + 0.25*order t-14 +  0.56*receive t-15 + eo 

receive t= 0.26*order t-4 + 0.21*order t-6 + 0.60*voucher t-10 + er 

vouchert =0.73*receivet-1 - 0.25*ordert-7 + 0.22*ordert-17 + 0.24*receivet-17+ ev 

The over-parameterization problem can be resolved by step-wise procedures to 

transform the general form VAR into Subset VAR. However, it requires auditors’ time and 

judgment to reduce the general form VAR model into Subset VAR model, which is 

antithetical to the automated nature of the CA system.  

Recent development in Bayesian statistics, however, allows the model itself to 

control parameter restrictions. The BVAR model includes prior probability distribution 

functions to impose restrictions on the parameter estimates, with the covariance of the prior 
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distributions controlled by “hyperparameters”. In other words, the values of 

hyperparameters in the BVAR model control how far the model coefficients can deviate 

from their prior means and how much the model can approach an unrestricted VAR model 

(Doan et al. 1984, Felix and Nunes 2003). The BVAR model can release auditors from the 

burden of parameters restriction to derive the Subset VAR model. 

Continuity Equation Candidates: Linear Regression Model 
In the linear regression model we specify the lagged values of daily aggregates of 

transaction item quantity in the order process and the receive process as two independent 

variables respectively, and the voucher payment quantity aggregate as the dependent variable. 

Again, we use the mode value of lags in individual transactions as estimates for the lags in 

the model (i.e. 2 day lag between the ordering and voucher payment processes, and 1 day lag 

between the receiving and voucher payment processes).   No intercept is used in our model 

because we can not find any valid meaning for the intercept. Our OLS linear regression 

model is expressed as follows: 

 vouchert = a*ordert-2 + b*receivet-1 + ε 

Where 

order = daily aggregate of transaction quantity for the ordering process 

receive = daily aggregate of transaction quantity for the receiving process 

voucher = daily aggregate of transaction quantity for the voucher payment process 

t= transaction time at time t 

Again we use the first 100 days of our data set as the training subset to estimate our 

model. The estimated linear regression model is: 

 vouchert = 0.08* ordert-2 + 0.67* receivet-1 + e 

The a estimate is statistically insignificant (p>0.68) while the b estimate is significant 

at 99% level (p<0.0001). 

                                                                                                                                                 
16 We find that the MAPEs for predictions of Order, Receive, and Voucher variables are all over 54%, much 
larger than the MAPEs of the Simultaneous Equation Model, the linear regression model  and the subset VAR 
model. Refer to section 5.1 for MAPE definition. 
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Model Online Learning Protocol 
One distinctive feature of analytical modeling in CA is the automatic model selection 

and updating capability. Traditional analytical modeling is usually based on static archival 

data sets. Auditors generally apply one model to the entire audit data set. In comparison, 

analytical modeling in CA can be based on the continuous data streams dynamically flowing 

into the CA system. The analytical modeling in CA thus has the potential to assimilate the 

new information contained in every segment of the data flows and adapt itself constantly. 

Each newly updated analytical model is used to generate a prediction only for one new 

segment of data. This model updating procedure is expected to improve prediction accuracy 

and anomaly detection capability. 

[Insert Figure 3 here] 

V. Anomaly Detection Comparison across CE Candidates 

MAPE Comparison 
While performing the analytical procedures, auditors use different methods to make 

predictions on account numbers. It is desirable for expectation models to make forecasts as 

close to actual values as possible.  Many prior AP studies evaluate expectation models in 

terms of prediction accuracy (Kinney 1978, Wild 1987, Dzeng 1994, Allen et al. 1999, Chen 

and Leitch 1998, Leitch and Chen 2003). To parallel this line of research we compared the 

prediction accuracies for the three candidate CE models using two alternate measures of 

prediction accuracy, MAPE and error detecting ability.  

Mean Absolute Percentage Error, the absolute value of the difference between the 

predicted value and the actual value measured as a percentage of the actual value, is a 

commonly used metric of prediction accuracy. It is expected that a good model should have 

a small MAPE. The training set is first used to estimate each of the four candidate models. 

Then, each estimated model is used to make one-step-ahead forecasts and the forecast 

variance calculated. After that, the model is updated based on the new data feeds in the hold-

out set and the previous steps are repeated again. Finally, all the variances are summed up 

and divided by the total number of observations in the hold-out sample to compute the 

MAPE. The results for MAPE of Voucher predictions are presented in Table 2. 

 [Insert Table 2 Here] 
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The results indicate that as measured by the MAPE metric the prediction accuracies 

of these four models are close. The BVAR model has the best prediction accuracy 

(MAPE=0.3330), followed by the subset VAR model (MAPE=0.3374), though the standard 

deviation for the BVAR model is slightly higher than the Subset VAR. The SEM has the 

lowest prediction accuracy (MAPE=0.3499). These prediction accuracies indicate that the 

forecasts generated by the expectation models usually differ from the reported amounts by 

approximately 30%. 

There are no universal criteria to determine whether these prediction accuracies are 

good or not because MAPE values are data dependent. Prior studies (Kinney 1978, Wild 

1987, Chen and Leitch 1998) on expectation models indicate that large variances exist in 

prediction accuracies when different data sets are used. The MAPE values reported in Wild’s 

(1987) study range from 0.012 for Cost of Goods Sold prediction to 7.6 for Cash and 

Security prediction using the same expectation model. Our conclusion is that by the MAPE 

metric, all three candidate CE models show promise as benchmarks for AP tests.  

Error Detecting Ability Comparison 
 A continuity equation is a means towards an end and not an end in itself. The 

rationale for constructing a CE-based AP test is to allow the detection of anomalies 

effectively and efficiently. Thus while predicting the value of a variable with low MAPE is 

desirable, more useful is the ability to detect errors.  

To measure the detection capability of the three CE candidate models we use two 

metrics: the number of false positive errors and the number of false negative errors.17  A 

false positive error is also called a false alarm or a type I error, which is a non-anomaly 

mistakenly detected by the model as an anomaly. A false negative error is also called a type II 

error, which is an anomaly failed to be detected by the model. While a false positive error 

can waste auditor’s time and thereby increase audit cost, a false negative error is usually more 

detrimental because of the material uncertainty associated with the undetected anomaly. An 

effective and efficient AP model should keep both the number of false positive errors and 

the number of false negative errors at a low level. 

                                                 
17 For the presentation purpose, we also include the tables and charts of detection rate, which equals to 1 minus 
false negative error rate. 
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To compare the anomaly detection capabilities of the CE models under different 

settings we randomly seed eight errors into the hold-out sample. We also test how the error 

magnitude can affect each AP model’s anomaly detection capability with five different 

magnitudes are used in every round of error seeding: 10%, 50%, 100%, 200% and 400% of 

the original actual value of the seeded observations. The entire error seeding procedure is 

repeated ten times to reduce selection bias and ensure randomness.18

Prior AP studies discuss several investigation rules to identify an anomaly (Stringer 

1975, Kinney and Salaman 1982, Kinney 1987). A modified version of the statistical rule 

(Kinney 1987) is used in this study. Prediction intervals (PI), equivalent to a confidence 

interval for an individual dependent variable, are used as the acceptable threshold of 

variance. If the value of the prediction exceeds either the upper or lower limits of the PI, 

then the observation is flagged as an anomaly. 

The selection of the prediction interval is a critical issue in the effectiveness of the 

AP test. The size of prediction interval is dictated by the value of the significance level α. 

Choosing a low α value (e.g. 0.01), leads to wide tolerable boundaries (i.e. large prediction 

interval) and a resulting low detection rate. On the other hand, if a high α value is selected, 

then the prediction interval would be overly narrow and many normal observations would 

be flagged as anomalies. To solve this problem, we have followed two approaches to select 

the prediction interval percentages. In the first approach α values are selected to control the 

number of false positive errors in various models respectively. More specifically, an α value is 

selected which is just large enough to yield two false positive errors in the training data set. 

In the second approach which is a traditional approach, predetermined α values, 0.05 and 

0.1, are used for all the expectation models.  

Before we can use this methodology to compare the three candidate CE models, 

another critical issue needs to be addressed, an issue that only arises in a continuous audit 

setting: real time error correction.  

                                                 
18 Leitch and Chen (2003) use both positive and negative approaches to evaluate the anomaly detection 
capability of various models. In the positive approach all the observations are treated as non-anomalies. The 
model is used to detect those seeded errors. In contrast, the negative approach treats all observations as 
anomalies. The model is used to find those non-anomalies. This study only adopts the positive approach 
because it fits better with established audit practice for AP tests. 
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Real-time Error Correction 
 Another important distinction between CA techniques and standard auditing that 

was explored in this project is what we call “Real Time Error Correction”. In a CA 

environment when an anomaly is detected, the auditor will be notified immediately and a 

detailed investigation will be initiated. In theory, the auditor will then have the ability to 

correct the error before the next round of audit starts.  

 Whether this technical possibility can or will be carried out in practice depends both 

upon the speed at which error correction can be made and the more serious issue of the 

potential threat to auditor independence of using data in subsequent tests that the auditor 

has had a role in correcting. These issues clearly require detailed consideration, but what we 

focused on at this stage was quantifying the benefits of real time error correction in a CA 

environment. These issues clearly require detailed consideration, but doing so is beyond the 

scope of the current study. What we focus on here is the technical implication for AP in CA 

if errors are indeed detected and corrected in real time in a CA environment. Specifically, 

when the AP model detects a seeded error in the hold-out sample, we examine the 

consequences on subsequent error detection if the seeded error is corrected by substitution 

of the original actual value before the model is used again. 

For comparison purpose, we test how our candidate CE models work with and 

without real time error correction. Unlike continuous auditing, anomalies are detected but 

usually not corrected immediately in traditional auditing. To simulate this scenario, we don’t 

correct any errors we seeded in the hold-out sample even if the AP model detects them.  

[Insert Table 3A, through Table 13B  here] 

Overall, the results show lower false negative error rates for all three candidate CE 

models with error correction, especially when the error magnitude is large (100% or more). 

This finding is consistent with the prior expectation. Under some rare circumstances (e.g. 

Table 10B, Error Magnitude 50%), the non-correction model has slightly better detection 

rate than the correction model. All these exceptions occur when the error magnitude is small 

(no larger than 50 percent). Figure 4 illustrates such a scenario. The prediction interval for 

the next forecast value is adjusted after the first error has been detected and corrected.  If 

the next value is an error and falls right within the prediction interval, however, won’t be 
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detected by the error-correction model. On the other hand, the error will be in the rejection 

area in the non-correction model.  

 Higher false positive error rates, mostly when error magnitudes are large, are 

observed for the error-correction models, which means that the error-correction models can 

detect more anomalies but at a cost of triggering more false alarms. However, a further 

investigation reveals that the false alarms are mostly caused by certain records in the holdout 

sample, which are named by this study as original anomalies. These original anomalies are 

very likely to be caused by measurement errors in the data set since our data set consists of 

unaudited operational data. This measurement error problem with non-audited data is also 

reported by previous studies (Kinney and Salamon 1982, Wheeler and Pany 1990). Because 

the non-correction model would not correct those undetected errors, the impact of original 

anomalies, whose values remain constant, would be eclipsed by the increase in seeded error 

magnitude. Therefore, non-correction model would trigger fewer false alarms when the 

magnitude in seeded error increases. On the other hand, the impact of original anomalies 

would not decrease as the error-correction model would correct all detected errors.  

Auditors are usually more averse to false negative errors than to false positive errors 

if the false positive error rate is kept at a reasonable level. The cost of false positive errors is 

only a waste of auditor’s time and effort while the cost of false negative errors can be 

detrimental to the client firm and auditor’s reputation. In summary, the error-correction 

models have better anomaly detection performance than the non-correction models. The 

error correction protocol can improve the anomaly detection performance. 

Another noteworthy finding is that the α value controls the tradeoff between the 

false positive and false negative error rates. A large α value leads to more false positive errors 

but fewer false negative errors. Meanwhile, a small α value leads to fewer false positive errors 

but more false negative errors. It should also be noted that even though the BVAR model 

generally has the best detection performance, its false positive rate is also the highest among 

all models. Another finding is that even though we use the α value which only yields two 

false positive errors in the training data set for each CE model, the number of false positive 

errors generated in the hold-out sample is not equal among the CE models. This study does 

not control the number of false positive errors in the hold-out sample because it can lead to 

a look-ahead problem. Specifically, the data in the hold-out sample can not be used to 
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construct CE models since they would not be available in the real world when the auditor 

builds expectation models. 

Disaggregated data versus aggregated data 
It is expected that unconstrained data are not only available but also used by auditors 

in the proposed CA system, which leaves the choice of the degree of aggregation in the AP 

tests up to them. Prior studies (Kinney and Salamon 1982, Wheeler and Pany 1990, Dzeng 

1994) suggest that disaggregated data can provide better performance for expectation 

models. This study examines if the disaggregated data can make CE models perform better 

than the aggregated data. Data can be aggregated on different dimensions, and we compare 

the efficacy of CE based AP tests using temporal and geographic disaggregation. 

  In the temporal disaggregation analysis we examine the differential anomaly 

detection performances using weekly data versus the daily data. Errors are seeded into the 

weekly data in the same fashion as in previous simulations. We follow prior studies (Kinney 

and Salamon 1982, Wheeler and Pany 1990) to seed errors into the daily data. In the best 

case scenario, the entire weekly error is seeded into a randomly selected day of a week. In the 

worst case scenario, the weekly error is first divided by the number of working days in a 

week (e.g. E/5) and then seeded into each working day of that week. In addition to the 

different aggregation levels of data comparison, the error-correction and non-correction 

models are again compared to verify if the previous findings still hold. Due to the scope of 

this study we only use a single α value 0.05 in all models. The results are presented in Tables 

14A/B through Tables 17A/B and Figures 4A/B through Figures 7A/B.  

 

The results are generally consistent with our expectations. In terms of detection 

ability, all the CE models perform the best using the best case scenario daily data, followed 

by the weekly data. All the models have the poorest anomaly detection performance using 

the worst case scenario daily data. This result is not surprising because the weekly error is 

spread evenly into each day making the seeded error act as a systematic error which is almost 

impossible to detect (Kinney 1978). With respect to false positive error rates, the results are 

mixed. We believe that the original anomalies in our data sets caused this problem. In the 

cross model comparison the BVAR model generally detects more errors than other models 
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but in the mean time triggers more false alarms. The linear regression model generally has 

fewer false alarms but suffers from low detection rate when error magnitudes are small. 

  We repeat the analyses aggregating data on the geographic dimension and obtain 

similar results. 

VI Discussion 

Limitations of the Analysis 
Our data sets are extracted from a single firm, which may constitute a selection bias. 

Until we test our data level CA system using other firms’ data sets, we will not have empirical 

evidence to support that our AP models are portable and can be applied to other firms. In 

addition, our data sets contain noise, as the fact that there are preexisting anomalies in our 

data indicates. Since our data sets are actually extracted from a central data warehouse which 

accepts data from both ERP and legacy systems in the firm’s subdivisions, it is inevitable for 

our data sets to be contaminated by errors and noises. The date truncation problem also 

produces noise in our data sets. Of course, all AP tests suffer from these problems, and they 

are not unique to the CA environment. 

As with any analytical procedures, a detected anomaly can only indicate the presence 

of a problem, and cannot pinpoint the problem itself, while a failed test of detail (for 

example, a negative confirmation, a reconciliation failure) does, but only if the auditor knows 

which data to test. Business processes can break down for a variety of reasons, some “real”, 

meaning at the business process level itself, and some “nominal”, meaning that even if the 

integrity of the underlying business process is not compromised, the CE may fail to 

represent that.  

An example of a “nominal” violation would be a seasonal slow down in the delivery 

of shipments, which results in a broken CE model due to a shift in the value of the time lag. 

This is not indicative of a faulty business process, but an inevitable outcome of trying to fit 

the changing reality into a benchmark constructed using obsolete data. Thus, the auditor’s 

investigation is bound to identify this situation as a false positive, unless the CE model is 

able to adapt accordingly. 

The CE model is expected to signal the presence of anomalies in cases where the 

underlying business process is compromised, as for example when a strike affects a supplier 
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or when a raw material becomes scarce. The purpose of using CE-based AP tests is to detect 

these process errors and to then generate a signal for the auditor to investigate the reasons 

for the broken processes through a targeted investigation of details in as real time as 

possible. This clearly shows the advantage of using continuity equations to relate the most 

disaggregated metrics possible, since the more disaggregated the metrics are the narrower the 

scope of the auditor’s investigation can be. However, the more disaggregated the metrics, the 

less stable the CE relationship. This is the inescapable tradeoff between the level of 

disaggregation of the metrics and the stability of the continuity equations, as the results of 

this study demonstrate.  

Another issue emerged in this study is the selection of the α value which controls the 

number of false positive errors and false negative errors. The optimal α value cannot be 

obtained unless the costs of false positive errors and false negative errors are known. 

However, while it is generally accepted that the cost of false negative errors greatly exceeds 

that of false positive errors, the choice of a particular ratio of these costs is usually highly 

controversial. Additionally, the optimal α value would change as data sets and expectation 

models change.  

Future Research Directions 
Since this paper is devoted to a new research area, much work needs to be done. The 

most important issue that has to be addressed is the feasibility of using CE models in 

practice. Few auditors in the field will be willing or able to use statistical methods as 

demanding as those utilized in this project. For continuous data level auditing to be truly 

useful in future CA systems, there will have to be close to a “push button” addition to the 

audit toolkit, which means that at a minimum CE models developed in the laboratory must 

be generally applicable to different firms and processes. Testing the robustness of the CE 

models created using this data on other data sets is on our research agenda. CE models 

should also be compared with other approaches to BP modeling such as artificial 

intelligence. The value of including other independent and control variables in our models 

also needs to be examined.  

An important step when implementing continuous data level auditing is in 

determining which business process should be modeled by continuity equations and subject 

to AP testing. There are a large number of business processes that can be modeled—and as 
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we have seen, far more data than can be handled—and the auditor cannot model all of them 

and indeed, does not need to. Providing assurance only necessitates the examination of the 

key processes that define a business, and these, in turn, will depend on the company’s 

strategy, its product space, competitive environment and current financial condition and 

history. There needs to be research undertaken on the general question of the types of 

business processes that an auditor is likely to encounter, and the way in which these 

processes can be represented in continuity equations.  

In particular, it needs to be kept in mind that while certain important indicators of 

business processes can be implicit and conceptual (for example, “customer satisfaction is 

important because it ultimately drives profits”), continuity equations are meant to be used in 

tests of factual evidence. That measurement aspect of continuity equations is why they are 

not synonymous with a business process, but only a measurable analytical model of one. 

That is, the continuity equation relates the metrics, while the business process is the 

underlying set of activities, and so the continuity equations model is a function not only of 

the characteristics of that business process, but of the way in which that process is measured. 

That fact also means that as a first step towards a categorization of continuity equations and 

their characteristics, we have to develop a classification of business processes:  

Endogenous or Exogenous: Endogenous processes are ones determined by 

underlying technological or institutional constraints, and so are under the control of the 

company, while exogenous processes are ones whose outcomes depend on the actions of 

other parties. Outsourcing relationships and special purpose entities, however, can obscure 

clarity of this classification. The importance of supply chain management and globalization 

emphasizes the need for auditors to take a broad view of the scope of the businesses, 

looking beyond functions, departments and even the company itself. Thus the value chain is 

extended upstream, to important suppliers (who are increasingly, global), and downstream, 

to customers.  

Degree of Uncertainty: Closely related to the prior classification is the degree of 

uncertainty of the process, which is defined over a continuum because there are very few 

processes that are entirely certain. Even such endogenous processes as production functions 

will have normal variation in output, while exogenous processes are hypothesized 

relationships to begin with, and so have inherent uncertainty. Business process uncertainty 

 33



will carry through to the continuity equation built upon it, and the nature of that process will 

also affect the level of measurement uncertainty of the continuity equation itself.  

Financial or Non Financial: Continuity equations based on the accounting 

relationships, such as reconciliations, are financial in nature, by definition. While an 

important task in the audit is establishing the reliability of accounting numbers (especially 

given the requirements of Section 404 of the Sarbanes-Oxley Act), there is now a widespread 

recognition that managing the company requires looking beyond the financial numbers to 

the underlying non-financial variables and processes. Thus, the Total Quality Control 

movement pointed out that quality only improves when it is measured directly, on a per-unit 

basis, rather than at the aggregated cost of quality level. The challenge facing auditors today 

is incorporating the analysis of non-financial drivers of company performance into their 

examination of financial measures of profit.  

The fact that continuity equations provide an analytical model of interrelated 

business processes means that they also can be classified according to the categories listed 

above. But the CE model is not synonymous with the underlying business processes. Even if 

the underlying business process is conceptually certain, the continuity equation 

representation of it could be uncertain because the measurement of the data takes place 

within bounds of precision and time, thus a distinction that must be made between the 

underlying business process and the probabilistic CE model that is used to provide a 

benchmark for it.  

Statistical and non-statistical Methods: The CE models used in the analytical 

procedures are based on statistical methods. One can introduce non-statistical methods to 

future studies and compare the results with the CE models. Artificial neural networks can be 

a good option since their application in forecasting has been praised by other researchers. 

Much more work obviously needs to be done in developing and implementing CE 

models, combining theoretical analysis with empirical research that will illustrate the 

challenges that auditors will encounter when putting the concept of continuous data level 

auditing into practice. In particular, the costs and benefits of CE based analytic procedures 

need further investigation. 
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VII Conclusion  
In this paper we develop a continuous data level auditing system utilizing business 

process based analytic procedures. The first component of the system is automatic 

transaction verification to filter out exceptions, which are transactions violating user defined 

business process rules. The second component of the CA system uses continuity equations 

to provide benchmarks for process level AP tests which are applied to the transaction stream 

to identify statistical anomalies possibly indicating business process problems. AP tests are 

needed to complement transaction verification given the inability to define rules for all 

possible exceptions and to identify patterns of anomalous firm behavior.  

This is the first study on the use of unconstrained data to develop analytical 

procedures for continuous auditing. It is also the first attempt to use empirical data to 

compare different AP models in a CA context. The choice of aggregation level in the AP 

tests is up to the auditor who is not constrained to use data that is already at a high level of 

aggregation, such as account balances.  Hence, the auditor has the freedom to make the 

tradeoff between utilizing more stable metrics by appropriate aggregation versus the 

resulting loss of information content, as opposed to being forced to accept limitation on the 

data imposed by outside circumstances. The highly disaggregated data that underlies CA 

allows auditors to fit equations relating to specific metrics, such as those related to individual 

business units, or individual customers or vendors, or small coherent subgroups of them. 

The main benefit, as compared with traditional analytical procedures is that anomalies can be 

identified which are undetectable at higher levels of aggregation.  

We model flow relationships between different metrics of related business processes 

as a system of continuity equations. We use a seeded error simulation study to compare the 

anomaly detection capability of three candidate CE models. Our results confirm that joint 

analysis of business processes gives the auditor an analytical procedure with a robust 

capability to detect anomalies in a real time continuous auditing environment with highly 

disaggregated data.   

An important methodological innovation of this study is the examination of the 

capabilities of CA to investigate and correct identified problems in (close to) real time. We 

therefore introduce a real time error correction protocol in our simulation study and examine 

the differential detection capabilities between models with error correction and without error 
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correction. We show that, as expected, under most circumstances the use of real time error 

correction results in superior performance. 

Overall this study finds that while there are differences in the predictive ability and 

anomaly detection performance of candidate CE models, all models perform extremely well 

and no single model performs better on all aspects. From this we can draw two important 

conclusions.  

First, that unlike in the traditional audit literature on analytic procedures, the inability 

to pick a winner in a “horse race” across the candidate CE models is less important than the 

fact that all models yield highly efficient AP tests.  The point is that because of its automated 

and technology driven nature, it is quite feasible and even desirable for the continuous data 

level audit system to use benchmarks based on multiple CE models instead of being forced 

to select only one, as would be necessary in a more manual system. For example, the BVAR 

model can be used first to detect anomalies because it has a low false negative error rate. 

Subsequently, the simultaneous equation model and the linear regression model can be used 

to remove the false alarms from the BVAR-detected anomalies because these two models 

have relatively low false positive error rates.  

The point to be remembered is that in a CA setting with unconstrained data 

combined with unconstrained computational resources to analyze that data there is no 

longer any need to be parsimonious in the collection of audit evidence, yet another 

indication of the different mentality that auditors will need to adopt as they shift from 

standard to continuous auditing, Indeed, dealing with more data rather than less, in real time 

as opposed to archival, will become a necessity once stakeholders recognize that traditional 

audit methodologies are essentially throwing away the richness of the unconstrained data 

that the firm’s IT systems are now making available to the auditor, not to mention the fact 

that the time frame for the audit is increasingly at odds with the decision cycles of the real 

time business, as well as its process driven strategy.  

Our second conclusion from the fact that all three CE models yield effective analytic 

procedures is that when auditors have access to unconstrained data, the richness of that 

disaggregate data combined with the ability to make real time error correction makes error 

detection robust across a variety of expectations models. In other words, it is the nature of 

the data that serves as audit evidence that is the primary driver of audit effectiveness, with 
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the selection of the specific analytic procedure a second order concern—not because the 

audit benchmark is not important, but because auditing at the process level makes errors 

stand out much more obviously in the data.  

Of course, we obtain this result in a setting in which our AP tests use continuity 

equation based benchmarks that are already sophisticated models of underlying business 

processes. Thus perhaps the correct way of stating our conclusion is that when data is 

unconstrained, it is important to not throw away that data and to conduct analytic 

procedures at the process level. Doing so necessitates the use of continuity equations as 

benchmarks, but the auditor has the reassurance when implementing data level CA that any 

CE model will work almost as well. 

These are key conclusions in support continuous data level auditing and its ability to 

make use of unconstrained data, implement real time error correction and give auditors the 

choice of the degree of aggregation. Future research applying this CA methodology across 

different firms and different data sets is necessary to see whether these conclusions are 

robust, and to examine what their implications are for audit practice.   
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Figures, Tables and Charts 
Figure 1: Architecture of Data-Oriented Continuous Auditing System 
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Figure 2: Business Process Transaction Flow Diagram 

Ordering 
Process 

Voucher 
Payment 
Process 

Receiving 
Process 

 

 44



Figure 3: Model Updating Protocol 
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Figure 3: Multivariate Time Series Model Selection 
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Table 1: Summary Statistics 
 
 
   Variable N  Mean  Std Dev Minimum Maximum 
    
   Order 180  10631.38 6840.51 4597  51392 
   Receive 180  8876.26 3195.16 4430  31412 
   Voucher 180  7496.74 3874.47 187   31209 
 
 
The table presents the summary statistics for the transaction quantity daily aggregates for each business 
process. The low minimums for Receive and Voucher are due to the date cutting off problem. The data sets 
span from 10/01/03 to 06/30/04. Many related transactions for the Receive and Voucher for the first 2 days 
in the data sets may happen before 10/01/03. 
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Table 2A: False Positive Error Rates Comparison between Error-correction and Non-

correction Bayesian MTSM Using Daily Quantity Aggregate Data of Entire Company, 

α=0.18 

 

Error Magnitude Error Correction Non-Correction 

10% 0.4597 0.4597 

50% 0.4597 0.4472 

100% 0.4597 0.4486 

200% 0.4597 0.4125 

400% 0.4597 0.3722 

 

 

Table 2B: False Negative Error Rates Comparison between Error-correction and Non-

correction Bayesian MTSM Using Daily Quantity Aggregate Data of Entire Company, α 

=0.18 

 

 Error Magnitude Error Correction Non-Correction 

10% 0.4625 0.4625 

50% 0.25 0.25 

100% 0.1125 0.125 

200% 0.05 0.05 

400% 0 0 
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Table 3A: False Positive Error Rates Comparison between Error-correction and Non-

correction Bayesian MTSM Using Daily Quantity Aggregate Data of Entire Company, α 

=0.10 

 

Error Magnitude Error Correction Non-Correction 

10% 0.3847 0.3847 

50% 0.3833 0.3806 

100% 0.3833 0.3681 

200% 0.3833 0.3542 

400% 0.3833 0.2958 

 

 

Table 3B: False Negative Error Rates Comparison between Error-correction and Non-

correction Bayesian MTSM Using Daily Quantity Aggregate Data of Entire Company, α 

=0.10 

 

Error Magnitude Error-Correction Non-Correction 

10% 0.5152 0.5125 

50% 0.2875 0.3250 

100% 0.1625 0.1875 

200% 0.0625 0.1000 

400% 0 0.025 

 

 

Table 4A: False Positive Error Rates Comparison between Error-correction and Non-

correction Bayesian MTSM Using Daily Quantity Aggregate Data of Entire Company, α 

=0.05 
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Error Magnitude Error Correction Non-Correction 

10% 0.342 0.336 

50% 0.339 0.328 

100% 0.340 0.318 

200% 0.344 0.293 

400% 0.344 0.250 

 

 

Table 4B: False Negative Error Rates Comparison between Error-correction and Non-

correction Bayesian MTSM Using Daily Quantity Aggregate Data of Entire Company, α 

=0.05 

 

Error Magnitude Error-Correction Non-Correction 

10% 0.5500 0.5500 

50% 0.3750 0.4000 

100% 0.2125 0.2500 

200% 0.0625 0.1250 

400% 0 0.0250 
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Table 5A: False Positive Error Rates Comparison between Error-correction and Non-

correction Subset MTSM Models Using Daily Quantity Aggregate Data of Entire 

Company, α =0.15 

 

Error Magnitude Error Correction Non-Correction 

10% 0.1083 0.1083 

50% 0.1083 0.1000 

100% 0.1083 0.0875 

200% 0.1083 0.0292 

400% 0.1083 0.0014 

 

 

Table 5B: False Negative Error Rates Comparison between Error-correction and Non-

correction Subset MTSM Models Using Daily Quantity Aggregate Data of Entire 

Company, α =0.15 

 Error Magnitude Error Correction Non-Correction 

10% 0.8125 0.8125 

50% 0.7250 0.7125 

100% 0.3750 0.4625 

200% 0.1000 0.2250 

400% 0 0.1125 
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Table 6A: False Positive Error Rates Comparison between Error-correction and Non-

correction Subset MTSM Models Using Daily Quantity Aggregate Data of Entire 

Company, α =0.10 

 

Error Magnitude Error Correction Non-Correction 

10% 0.088 0.083 

50% 0.082 0.074 

100% 0.088 0.064 

200% 0.088 0.032 

400% 0.088 0.019 

 

 

Table 6B: False Negative Error Rates Comparison between Error-correction and Non-

correction Subset MTSM Models Using Daily Quantity Aggregate Data of Entire 

Company, α =0.10 

 Error Magnitude Error Correction Non-Correction 

10% 0.8625 0.8625 

50% 0.8000 0.8000 

100% 0.5000 0.6000 

200% 0.1250 0.2125 

400% 0 0.1250 
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Table 7A: False Positive Error Rates Comparison between Error-correction and Non-

correction Subset MTSM Models Using Daily Quantity Aggregate Data of Entire 

Company, α =0.05 

 

Error Magnitude Error Correction Non-Correction 

10% 0.039 0.039 

50% 0.039 0.025 

100% 0.039 0.014 

200% 0.039 0.004 

400% 0.039 0.002 

 

 

Table 7B: False Negative Error Rates Comparison between Error-correction and Non-

correction Subset MTSM Models Using Daily Quantity Aggregate Data of Entire 

Company, α =0.05 

 Error Magnitude Error Correction Non-Correction 

10% 0.925 0.925 

50% 0.825 0.825 

100% 0.615 0.663 

200% 0.212 0.350 

400% 0.013 0.200 
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Table 8A: False Positive Error Rates Comparison between Error-correction and Non-

correction Simultaneous Equation Models Using Daily Quantity Aggregate Data of 

Entire Company, α =0.04 

 

Error Magnitude Error Correction Non-Correction 

10% 0.1000 0.1000 

50% 0.1014 0.1029 

100% 0.1043 0.0800 

200% 0.1029 0.0556 

400% 0.0986 0.0271 

 

 

Table 8B: False Negative Error Rates Comparison between Error-correction and Non-

correction Simultaneous Equation Models Using Daily Quantity Aggregate Data of 

Entire Company, α =0.04 

 

 Error Magnitude Error Correction Non-Correction 

10% 0.8375 0.8375 

50% 0.7750 0.7750 

100% 0.4375 0.4750 

200% 0.2000 0.2625 

400% 0.0250 0.1625 
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Table 9A: False Positive Error Rates Comparison between Error-correction and Non-

correction Simultaneous Equation Models Using Daily Quantity Aggregate Data of 

Entire Company, α =0.10 

 

Error Magnitude Error Correction Non-Correction 

10% 0.1886 0.1886 

50% 0.1900 0.1886 

100% 0.1912 0.1757 

200% 0.1887 0.1257 

400% 0.1864 0.0629 

 

 

Table 9B: False Negative Error Rates Comparison between Error-correction and Non-

correction Simultaneous Equation Models Using Daily Quantity Aggregate Data of 

Entire Company, α =0.10 

 

 Error Magnitude Error Correction Non-Correction 

10% 0.75 0.75 

50% 0.687 0.7 

100% 0.337 0.375 

200% 0.137 0.2 

400% 0.012 0.1 
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Table 10A: False Positive Error Rates Comparison between Error-correction and Non-

correction Simultaneous Equation Models Using Daily Quantity Aggregate Data of 

Entire Company, α =0.05 

 

Error Magnitude Error Correction Non-Correction 

10% 0.1386 0.1386 

50% 0.1342 0.1200 

100% 0.1412 0.1000 

200% 0.1400 0.0629 

400% 0.1331 0.0286 

 

 

Table 10B: False Negative Error Rates Comparison between Error-correction and Non-

correction Simultaneous Equation Models Using Daily Quantity Aggregate Data of 

Entire Company, α =0.05 

 

 Error Magnitude Error Correction Non-Correction 

10% 0.8125 0.8125 

50% 0.775 0.775 

100% 0.425 0.425 

200% 0.1875 0.25 

400% 0.025 0.1125 
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Table 11A: False Positive Error Rates Comparison between Error-correction and Non-

correction Linear Regression Models Using Daily Quantity Aggregate Data of Entire 

Company, α =0.06 

 

Error Magnitude Error Correction Non-Correction 

10% 0.1000 0.0971 

50% 0.0900 0.0886 

100% 0.0900 0.0571 

200% 0.9710 0.0343 

400% 0.1000 0.0200 

 

 

Table 11B: False Negative Error Rates Comparison between Error-correction and Non-

correction Linear Regression Models Using Daily Quantity Aggregate Data of Entire 

Company, α =0.06 

 

 Error Magnitude Error Correction Non-Correction 

10% 0.8500 0.8500 

50% 0.8125 0.8125 

100% 0.4875 0.5750 

200% 0.1750 0.2875 

400% 0.0125 0.1500 
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Table 12A: False Positive Error Rates Comparison between Error-correction and Non-

correction Linear Regression Models Using Daily Quantity Aggregate Data of Entire 

Company, α =0.10 

 

Error Magnitude Error Correction Non-Correction 

10% 0.1114 0.1071 

50% 0.1 0.1 

100% 0.1043 0.0943 

200% 0.1086 0.0486 

400% 0.11 0.0271 

 

 

Table 12B: False Negative Error Rates Comparison between Error-correction and Non-

correction Linear Regression Models Using Daily Quantity Aggregate Data of Entire 

Company, α =0.10 

 

 Error Magnitude Error Correction Non-Correction 

10% 0.8125 0.8125 

50% 0.7625 0.7625 

100% 0.4125 0.4625 

200% 0.1375 0.225 

400% 0.0125 0.0875 
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Table 13A: False Positive Error Rates Comparison between Error-correction and Non-

correction Linear Regression Models Using Daily Quantity Aggregate Data of Entire 

Company, α =0.05 

 

Error Magnitude Error Correction Non-Correction 

10% 0.09 0.09 

50% 0.089 0.0643 

100% 0.089 0.0457 

200% 0.09 0.0286 

400% 0.09 0.02 

 

 

Table 13B: False Negative Error Rates Comparison between Error-correction and Non-

correction Linear Regression Models Using Daily Quantity Aggregate Data of Entire 

Company, α=0.05 

 

 Error Magnitude Error Correction Non-Correction 

10% 0.8625 0.8625 

50% 0.8125 0.8125 

100% 0.525 0.6125 

200% 0.1875 0.2875 

400% 0.0125 0.175 

Table 14A: BVAR False Positive Error Rates Comparisons (Entire firm, Subunit Best Case, 
Subunit Worst Case) 
  

Error 
Magnitude 

Entire Company Mean Subunit  
Best Case  

Mean Subunit  
Worst Case  
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Error-
Correction 

Non-
Correction

Error-
Correction

Non-
Correction

Error-
Correction 

Non-
Correction

10% 0.342 0.336 0.344 0.336 0.347 0.347 
50% 0.339 0.328 0.350 0.275 0.347 0.339 
100% 0.340 0.318 0.347 0.244 0.344 0.336 
200% 0.344 0.293 0.349 0.210 0.344 0.320 
400% 0.344 0.250 0.349 0.173 0.350 0.285 

 
 
Table 14B: BVAR False Negative Error Rates Comparisons (Entire firm, Subunit Best Case, 
Subunit Worst Case) 
 

Entire Company Mean Subunit  
Best Case  

Mean Subunit  
Worst Case  

Error 
Magnitude 

Error-
Correction 

Non-
Correction

Error-
Correction

Non-
Correction

Error-
Correction 

Non-
Correction

10% 0.550 0.550 0.433 0.433 0.679 0.679 
50% 0.375 0.400 0.058 0.104 0.579 0.592 
100% 0.213 0.250 0.013 0.017 0.433 0.433 
200% 0.063 0.125 0.000 0.004 0.263 0.292 
400% 0.000 0.025 0.000 0.004 0.108 0.125 
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Figure 4A. BVAR Model False Positive Rate Comparisons (Entire firm, Subunit Best 
Case, Subunit Worst Case) 
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Figure 4B. BVAR Model False Negative Rate Comparisons (Entire firm, Subunit 
Best Case, Subunit Worst Case) 
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Entire-EC: Error correction model using entire company data 
Entire-NC: Non-correction model using entire company data 
Best-EC: Error correction model using mean subunit best case scenario data 
Best-NC: Non-correction model using mean subunit best case scenario data 
Worst-EC: Error correction model using mean subunit worst case scenario data 
Worst-NC: Non-Error correction model using mean subunit worst case scenario data 
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Table 15A: Subset VAR False Positive Error Rates Comparisons (Entire firm, Subunit Best 
Case, Subunit Worst Case) 
 

Entire Company Mean Subunit  
Best Case  

Mean Subunit  
Worst Case  

Error 
Magnitude 

Error-
Correction 

Non-
Correction

Error-
Correction

Non-
Correction

Error-
Correction 

Non-
Correction

10% 0.039 0.039 0.032 0.032 0.032 0.032 
50% 0.039 0.025 0.032 0.020 0.032 0.032 
100% 0.033 0.014 0.032 0.020 0.032 0.032 
200% 0.039 0.004 0.032 0.009 0.032 0.027 
400% 0.039 0.002 0.032 0.006 0.032 0.021 

 
 
Table 15B: Subset VAR False Negative Error Rates Comparisons (Entire firm, Subunit Best 
Case, Subunit Worst Case) 
 

Entire Company Mean Subunit  
Best Case  

Mean Subunit  
Worst Case  

Error 
Magnitude 

Error-
Correction 

Non-
Correction

Error-
Correction

Non-
Correction

Error-
Correction 

Non-
Correction

10% 0.925 0.925 0.867 0.875 0.950 0.950 
50% 0.825 0.825 0.433 0.513 0.913 0.913 
100% 0.615 0.663 0.125 0.233 0.867 0.875 
200% 0.212 0.350 0.000 0.117 0.667 0.742 
400% 0.013 0.200 0.000 0.075 0.488 0.554 
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Figure 5A. Subset VAR Model False Positive Rate Comparisons (Entire firm, 
Subunit Best Case, Subunit Worst Case) 
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Figure 5B. Subset VAR Model False Negative Rate Comparisons (Entire firm, 
Subunit Best Case, Subunit Worst Case) 
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Entire-EC: Error correction model using entire company data 
Entire-NC: Non-correction model using entire company data 
Best-EC: Error correction model using mean subunit best case scenario data 
Best-NC: Non-correction model using mean subunit best case scenario data 
Worst-EC: Error correction model using mean subunit worst case scenario data 
Worst-NC: Non-Error correction model using mean subunit worst case scenario data 
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Table 16A: SEM False Positive Error Rates Comparisons (Entire firm, Subunit Best Case, 
Subunit Worst Case) 
 

Entire Company Mean Subunit  
Best Case  

Mean Subunit  
Worst Case  

Error 
Magnitude 

Error-
Correction 

Non-
Correction

Error-
Correction

Non-
Correction

Error-
Correction 

Non-
Correction

10% 0.139 0.139 0.082 0.151 0.080 0.080 
50% 0.134 0.120 0.080 0.091 0.081 0.081 
100% 0.141 0.100 0.078 0.058 0.082 0.081 
200% 0.140 0.063 0.075 0.021 0.082 0.073 
400% 0.133 0.029 0.073 0.018 0.080 0.035 

 
 
Table 16B: SEM False Negative Error Rates Comparisons (Entire firm, Subunit Best Case, 
Subunit Worst Case) 
 

Entire Company Mean Subunit  
Best Case  

Mean Subunit  
Worst Case  

Error 
Magnitude 

Error-
Correction 

Non-
Correction

Error-
Correction

Non-
Correction

Error-
Correction 

Non-
Correction

10% 0.813 0.813 0.796 0.733 0.904 0.904 
50% 0.775 0.775 0.254 0.221 0.863 0.875 
100% 0.425 0.425 0.071 0.108 0.796 0.808 
200% 0.188 0.250 0.013 0.054 0.613 0.638 
400% 0.025 0.113 0.013 0.038 0.363 0.438 
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Figure 6A. SEM Model False Positive Rate Comparisons (Entire firm, Subunit Best 
Case, Subunit Worst Case) 
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Figure 6B. SEM Model False Negative Rate Comparisons (Entire firm, Subunit Best 
Case, Subunit Worst Case) 
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Entire-EC: Error correction model using entire company data 
Entire-NC: Non-correction model using entire company data 
Best-EC: Error correction model using mean subunit best case scenario data 
Best-NC: Non-correction model using mean subunit best case scenario data 
Worst-EC: Error correction model using mean subunit worst case scenario data 
Worst-NC: Non-Error correction model using mean subunit worst case scenario data 
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Table 17A: LRM False Positive Error Rates Comparisons (Entire firm, Subunit Best Case, 
Subunit Worst Case) 
 

Entire Company Mean Subunit Best Case Mean Subunit Worst 
Case  

Error 
Magnitude 

Error-
Correction 

Non-
Correction

Error-
Correction

Non-
Correction

Error-
Correction 

Non-
Correction

10% 0.090 0.090 0.058 0.053 0.058 0.058 
50% 0.089 0.064 0.057 0.029 0.058 0.057 
100% 0.089 0.046 0.058 0.025 0.058 0.053 
200% 0.090 0.029 0.058 0.016 0.058 0.048 
400% 0.090 0.020 0.058 0.010 0.057 0.034 

 
 
Table 17B: LRM False Negative Error Rates Comparisons (Entire firm, Subunit Best Case, 
Subunit Worst Case) 
 

Entire Company Mean Subunit Best Case Mean Subunit Worst 
Case  

Error 
Magnitude 

Error-
Correction 

Non-
Correction

Error-
Correction

Non-
Correction

Error-
Correction 

Non-
Correction

10% 0.863 0.863 0.842 0.850 0.921 0.921 
50% 0.813 0.813 0.333 0.400 0.904 0.904 
100% 0.525 0.613 0.108 0.171 0.842 0.850 
200% 0.188 0.288 0.000 0.071 0.642 0.667 
400% 0.013 0.175 0.000 0.042 0.450 0.496 

 

 66



Figure 7A. LRM Model False Positive Rate Comparisons (Entire firm, Subunit Best 
Case, Subunit Worst Case) 
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Figure 7B. LRM Model False Negative Rate Comparisons (Entire firm, Subunit Best 
Case, Subunit Worst Case) 
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Entire-EC: Error correction model using entire company data 
Entire-NC: Non-correction model using entire company data 
Best-EC: Error correction model using mean subunit best case scenario data 
Best-NC: Non-correction model using mean subunit best case scenario data 
Worst-EC: Error correction model using mean subunit worst case scenario data 
Worst-NC: Non-Error correction model using mean subunit worst case scenario data 
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Table 8A: False Negative Error Rates of SEM, MTSM, and Linear regression 

Error Magnitude Simultaneous 

Equations 

Multivariate Time 

Series 

Linear Regression 

10%  90.00% 96.25% 95% 

50% 78.75% 71.25% 68.75% 

100% 33.75% 32.5% 33.75% 

200% 12.50% 8.75% 17.5% 

400% 0 0 2.5% 

 
The false negative error rate indicates the percentage of errors that are not detected by the AP model. It is 

calculated as: (total number of undetected errors) / 8 (which is the number of seeded errors)*100%. 

 

 

 

Table 8B: Detection Rates of SEM, MTSM, and Linear regression 

Error Magnitude Simultaneous 
Equations 

Multivariate Time 
Series 

Linear Regression 

10%E 10.00% 3.75% 5% 

50%E 21.25% 28.75% 31.25% 

100%E 66.25% 67.50% 66.25% 

200%E 87.50% 91.25% 82.50% 

400%E 100.00% 100.00% 97.50% 

 
The detection rate indicates the percentage of errors that have been successfully detected. It is calculated as: 

100% - False Negative Error Percentage. 
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Chart 4A: Anomaly Detection Comparison of SEM, MTSM and Linear Regression — 

False Negative Error Rate. 
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Chart 4B: Anomaly Detection Comparison of SEM, MTSM and Linear Regression — 

Detection Rate 
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Table 9: False Positive Error Rates of SEM, MTSM, and Linear regression 

Error Magnitude SEM MTSM Linear Regression 

10%  0 0 0 

50% 0 0 0 

100% 0 0 0 

200% 0 0 0 

400% 0 0 0 

 

The false positive error rate indicates the percentage of non-errors that are reported by the AP model as errors. 

It is calculated as: (total number of reported non-errors) / (the number of observations in the hold-out 

set)*100%. 
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Table 10A: False Negative Error Rates of SEM, MTSM, and Linear regression for 

Tests Including Outliers and Error Correction. 

Error Magnitude Simultaneous 

Equations 

Multivariate Time 

Series 

Linear Regression 

10%  
86.25% 86.25% 83.75%

50% 
72.50% 75.00% 63.75%

100% 
38.75% 37.50% 30.00%

200% 
16.25% 12.50% 18.75%

400% 
0.00% 0.00% 1.25%

 
The false negative error rate indicates the percentage of errors that are not detected by the AP model. It is 

calculated as: (total number of undetected errors) / 8 (which is the number of seeded errors)*100%. 

 

Table 10B: Detection Rates of SEM, MTSM, and Linear regression for Tests 

Including Outliers and Error Correction. 

Error Magnitude Simultaneous 

Equations 

Multivariate Time 

Series 

Linear Regression 

10%  
13.75% 13.75% 16.25%

50% 
27.50% 25.00% 36.25%

100% 
61.25% 62.50% 70.00%

200% 
83.75% 87.50% 81.25%

400% 
100.00% 100.00% 98.75%

 
The false negative error rate indicates the percentage of errors that are not detected by the AP model. It is 

calculated as: (total number of undetected errors) / 8 (which is the number of seeded errors)*100%. 
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Chart 5A: Anomaly Detection Comparison of SEM, MTSM and Linear Regression 

for Tests Including Outliers and Error Correction— False Negative Error Rate. 
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Chart 5A: Anomaly Detection Comparison of SEM, MTSM and Linear Regression 

for Tests Including Outliers and Error Correction— Detection Rate. 
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Table 11: False Positive Error Rates of SEM, MTSM, and Linear regression for Tests 

Including Outliers and Error Correction. 

Error Magnitude Simultaneous 

Equations 

Multivariate Time 

Series 

Linear Regression 

10%  
10.00% 9.15% 9.78%

50% 
10.00% 9.15% 9.78%

100% 
10.00% 9.15% 10.00%

200% 
10.00% 9.15% 9.78%

400% 
10.00% 9.15% 9.78%

 
The false positive error rate indicates the percentage of non-errors that are reported by the AP model as errors. 

It is calculated as: (total number of reported non-errors) / 45 *100% for SEM and Linear Regression.;  (total 

number of reported non-errors) / 47 *100% for MTSM. 
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Chart 6: Anomaly Detection Comparison of SEM, MTSM and Linear Regression for 

Tests Including Outliers— False Positive Error Rates. 
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Table 12A: False Negative Error Rates of SEM, MTSM, and Linear regression for 

Tests Including Outliers and Without Error Correction. 

Error Magnitude Simultaneous 

Equations 

Multivariate Time 

Series 

Linear Regression 

10%  
86.25% 86.25% 82.50%

50% 
75.00% 76.25% 70.00%

100% 
46.25% 42.50% 37.50%

200% 
20.00% 17.50% 18.75%

400% 
8.75% 12.50% 7.50%

 
The false negative error rate indicates the percentage of errors that are not detected by the AP model. It is 

calculated as: (total number of undetected errors) / 8 (which is the number of seeded errors)*100%. 

 

Table 12B: Detection Rates of SEM, MTSM, and Linear regression for Tests 

Including Outliers and Without Error Correction. 

Error Magnitude Simultaneous 

Equations 

Multivariate Time 

Series 

Linear Regression 

10%  
13.75% 13.75% 17.50%

50% 
25.00% 23.75% 30.00%

100% 
53.75% 57.50% 62.50%

200% 
80.00% 82.50% 81.25%

400% 
91.25% 87.50% 92.50%

 
The false negative error rate indicates the percentage of errors that are not detected by the AP model. It is 

calculated as: (total number of undetected errors) / 8 (which is the number of seeded errors)*100%. 
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Chart 7A: Anomaly Detection Comparison of SEM, MTSM and Linear Regression 

for Tests Including Outliers and Without Error Correction— False Negative Error 

Rate. 
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Chart 7B: Anomaly Detection Comparison of SEM, MTSM and Linear Regression 

for Tests Including Outliers and Without Error Correction— Detection Rate. 
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Table 13: False Positive Error Rates of SEM, MTSM, and Linear regression for Tests 

Including Outliers and Without Error Correction. 

Error Magnitude Simultaneous 

Equations 

Multivariate Time 

Series 

Linear Regression 

10%  
9.78% 9.15% 9.56%

50% 
9.78% 8.09% 9.33%

100% 
9.78% 6.81% 7.78%

200% 
8.44% 5.74% 6.67%

400% 
7.11% 4.04% 5.56%

 
The false positive error rate indicates the percentage of non-errors that are reported by the AP model as errors. 

It is calculated as: (total number of reported non-errors) / 45 *100% for SEM and Linear Regression.; (total 

number of reported non-errors) / 47 *100% for MTSM. 
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Chart 8: Anomaly Detection Comparison of SEM, MTSM and Linear Regression for 

Tests Including Outliers and Without Error Correction— False Positive Error Rates. 
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