ceha s et . -

s .- . tamm Bt e

170 ONLINE 72 Conference Procesdings

I. TiTRODUCTION

Computer literature has neglected the topic of program
debugqging and system testing. Perheaps this is due to programmers’
and acacemicians' adversion to admitting thair errors. fis a result
their experiences in error avoidance are not shared by other users.
Yet it is useful and necessarv to explicitly and seriously consider
the probles involved in implementing programs, procedures and
systems,

Jones and MclLean (1) state this point quite clearly:

“As a class programmers tend to be eternally optimistic. They fail
to be reslistic about the problems of system design and the time
necessary to complete a complex system, For instance, sufficient
time is never allotted to debugging; if an appreciable amount of
debugging time were to be scheduled at the outset of a project, this
would be tantamount to an admission of professional inadequacy.”
Later in the saeme paper they suggest that in large scale software
system develepment apoproximately 304 of the {ime necessary for
system development should be allotted to system integration, debug-
ging and testing. Hearly one third of system development efforts
are dedicated to these tasks. In spite of these efforts, literature
on the matter is practically unavailable and has been given 1ittle
attention as an academic subject. Vender ilcot (2) points out that:
"Out of all the millicns of words written over the nast few years
about EDP, only one article (3) could be found that was devoted to
testing, and that was primarily on prouran testing.”

’ The entire problem of computer implemantation from its
early design and coding to its actual usage is quite a complex one.
‘inis paper is concerned with the sieps that take a program which is
already designed and coded to the final stages of its actual utili-
zation. These steps could be broken down into testing design and
testing implementation. Testing design, which includes testing
design for system and progrem testing, involves the design and
preparation of sample data that the prograim {or software system)
will utilize. This data should represent myst of the conditions
that the progrem will encounter. In testing implementation, data
will be entered for processing and evrors will be encountered in
coding as well as in the quantitative results cbtained. Once pro-
grams work independently with this sanple date they should be
tested in relation Lo other progravs and sample data.

This paper is primarily concerned with implementation
testing. APL is used as an online Tanguage to illustrate tne
general typologies of errors that are presented and to exemplify
some programning and debugging practices that can be used to rake
a program (or system) work.

This concern is not unknown to manufacturers, Thay
realize that one of software's most important features is itis
debuaging and error diagnosing characteristics. They also uncer-
stand that cfficient codes are beconing less important with the

ey e ekt et e Gt s et T el bbb e ”

NSNS P VESE S
ey S e & w—— 5 G et M @ 10 g 6 55 P S -

+ ~ - . [FRRPPINLES PP aeveie 2 W it caasin F it AN A wEde n AT bt N ata L
-t - [. - - PRI .
so- —eed e ot e dmaitas e eeea e .

- The artofonlinedebugging.

itiklos A, Vasarnelyi and Theodore J. liock

Accountling and Information Systems Pescarch Program
. iraduate School of lienagement
University of California, Los fingeles

Abstract

System testing and program dcbuaging are a somewhat
neqlected part of data processing. This paper suggests a general
toaxcnomy of nrograrming errors corposend of five general coicqouries:
P orarmar and Syntax Lrrors, B) Logical Errors, C) Hisconceptions,
w; Integration [rrors and L) Sysiem Control Errors. Software
testing is divided into two main processes: test design and test
implementation. Test inplementaticn is also subdivided into two
complementary functions: error detection and error clearance
(debugging). Two besic procedures are suagested for error detection.
while ten different procedures arc 2dded to complete debugging. The
final parts of this paper discuss the tradeoffs hetween online and
batch debucging and finally the behavicral factors which are related
to programmers' errors are discussed. Conclusicns and suggestions
for further research foliow.

PRIV IFPRPSIERIY RIS

P

LR T L SONC PR ORI, N IR L R SR S PE AT TR PO S s s Y et b St S s B emmd 2rLg e e amiihes .

170 ONLINE 72 Confrrence Proceuings

[. THTRODUCTIGH

Computer literature has neglected the topic of program
debugging and system testing. Perhaps this is due to prograrmers'
and acacemicians' adversion to admitting their errors. fhs a result
their exneriences in error avonidance are not shared by other users.
Yet it is useful and recessary to explicitly and seriously consider
the probleiis involved in implementing programs, procedures and
systems,

Jones and licLean (1) state this point quite clearly:

“As a class programmers tend to be eternally optimistic. They fail
to be reslistic about the problems of system design and the time
necessary to complete a complex system, For instance, sufficient
time is never allotied to debugging:; if an appreciable emount of
debugging tike were to he scheduled at the outset of a project, this
would be tantamount to an admission of professional inadequacy.”
Later in the same paper Llhey suggest that in large scale software
system develepment approximately 339 of the time necessary for
system development should be allotted to system inteqration, debug-
ging and testing. learly one third of systen developrment efforts
are dedicated to these tasks. In spile of these efforts, literature
on the matter is practically unavailable and has been given 1ittle
attention as an academic subject. Vander ilcot (2) points out that:
"Out of all the millions of words written over the past few years
al:out EDP, only one article (3) couid be found that was devoted to
testing, and that was primarily oh prouran testing.”

’ The entire problem of computer implementation from its
early design and coding to its actual usage is quite a complex one.
This paper is concerned with the steps that take a progrem which is
already designed and coded to the final stages of its actual utili-
zation. These sleps could be broken down into testing design and
testing implenmentation. Testing design, which includes testing
design for system gnd progrem testing, involves the design and
preparation of sample data that the program (or software system)
will utilize. This data should represent masit of the conditions
that the progrem will encounter., In testing implestentation, data
will be enteved for processing and errors will be encountered in
coding as well as in the quantitative results obtained. Once pro-
grams work independently with this sanple date they should lLe
tested in relation Lo other prograins and sample data.

This paper is primarily concerned with impliementation
testing. APL is used as an online language to iilustrate the

7 typologies of errors that are presented and to exemplify
some programming and debugging practices that can be used to make
a program (or system) work.

This concern is not unknown to manufacturers. Thoy
realize that one of sofiware's most impertant features is its
debugging and error diagnosing characteristics. They also under-
stand that efficient codes are becoming less important wiith the

P I I

. o s oot et | WS A 0

[A)

Sk et wmer— BT e P IC I 1T SO Vit SUIV I ORI SRR USSR T T OO PRt Vv e SES Vipy 3 JOUIORC AR S SEE e e

Theartofonline debugging. 171

advent of larger and faster hardware, and that these codes are
pecoming progressively prohibitive in the expensive process of pro-
-aram testing and system testing., YWATFOR (4), a fast Fortran
rompiler, was initially developed utilizina the same philasophy as
that established by the University cof 'icniqgan's ['AD language. With
"AD the need of z fast compiler for simple educational needs sur-
passed the necessity of efficient coding for production runs,
dowever, HATFNZ as pointed oul by Sienel (4) "has practical uses
out of the classroom. Chief among these is the time it can save 360
users in that non-productive but, alas, necessary debugging proce-
dure."

The next section discusses a general typology of programming
errors. Tnen, Scction 11l nresents roulines and procedures whicn
nay be used to avoid, diainose and clear errors. The last sections
delve deeper into the issues surrounding debugging including trade-
offs between offline (batch) and online debuagina, examples of
¢ebugging procedures, reporting and diegnosing features, and various
behavioral and numan information processing facters that induce
sroarsnmers to err, Finally, the need for and pessible routes of
future research in the field ave suggnsted.

11. GEREPAL TRIONOIY OF ERRORS

Five ceneral cateqories of errors can be identified.
Three of these are related to prograriming and coding while tihe
fourth is integral to qeneral svstem design and integration, and the
fifth deals with system utilization.

Type Kt Grarmar and Syntax Errors

Computer lanquanges are still not veyry flexible. They
are not capsble of identifying misused or incomplete expressions and
operands. Errors related to missnelied variables are coimienly found
in Fortran, ?L/1 and APL. For exanple, the computer may encounter a
variable spelled as DUMY whicn had earlier been defined as DU,
seing unable to identify the latest spelling, the computer would
cither define a new variable or give a "value error" type ressage.

Type B: Legical Lrrors

In this case the lonical flow of the prograum is not well
defined or designed, or exceptions and extreme cases are not thor-
oughly considerad and particular cases are ignored, resulting in
such absurdities as divisions by zero and scuare ropls of neaalive
nubers, 0Often the logical fleow of a prodran is incorrect due to
gmaner utilization of the lanzuage or simply due to leck of
at._cation by the programmer. Loops that are nol ciosed, transfers
to nen-existant labels, noor utilization of conditional birancning
are also errors that occur quite freauently in the programming world.

