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SUMMARY: This study develops a framework for continuous data level auditing system and uses a 

large sample of procurement data from a major health care provider to simulate an implementation 

of this framework. In this framework the first layer monitors compliance with deterministic business 

process rules and the second layer consists of analytical monitoring of business processes. A 

distinction is made between exceptions identified by the first layer and anomalies identified by the 

second one. The unique capability of continuous auditing to investigate (and possibly remediate) the 

identified anomalies in “pseudo-real time” (e.g., on a daily basis) is simulated and evaluated. Overall, 

evidence is provided that continuous auditing of complete population data can lead to superior 

results, but only when audit practices change to reflect the new reality of data availability.   

 

Keywords: continuous auditing, analytical procedures, population data, auditing practice. 
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INTRODUCTION 

This research note develops a continuous data level auditing system and uses a large sample of 

procurement data from a major health care provider to simulate an implementation of continuous 

auditing and investigate how audit could change when using real time complete population data. 

Overall, evidence is provided that continuous auditing of complete population data can lead to 

superior results, but only when audit practices change to reflect the new reality of data availability.   

This research note makes the following contributions: 

It develops a framework for continuous monitoring of business processes by internal auditors. 

In this framework the first layer monitors compliance with deterministic business process rules 

and the second layer implements analytical monitoring of business processes. In the extant 

auditing literature (mostly focused on external, not internal auditing), analytical procedures are 

utilized first in order to identify areas of potential concern for focusing detailed testing on the 

most relevant samples. This sequence of audit procedures is driven by the objective to reduce 

the amount of data that the auditor needs to obtain given the high cost of doing so. The change 

in the order becomes essential in continuous auditing since data today is much more easily 

accessible to auditors and the automation of tests of detail both enables and necessitates their 

application to the complete population of business transactions thus eliminating any rationale 

for sampling. 

It introduces a clear distinction between the two types of business process irregularities: those 

that are violations of deterministic business process rules and those that are significant statistical 

deviations from the steady state business process behavior. In the note’s framework the former 

are labeled exceptions and the latter anomalies. For example, if a company requires that all 

purchases be made only from previously authorized vendors, then a purchase order for a vendor 

not present in the list of authorized vendors constitutes an exception. If a company usually 

receives between 20 and 30 deliveries during a weekday, then a weekday with only 10 deliveries 

constitutes an anomaly. No clear distinction between exceptions and anomalies is usually made 

in the extant literature, and the terms are often used interchangeably. Distinguishing between 

these two types of irregularities allows for developing appropriate investigation and remediation 

procedures and properly focusing the efforts of internal auditors. 
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It bases audit analytics on highly disaggregated business process data down to the level of daily 

business process metrics. The most disaggregate data utilized in the extant literature tends to be 

limited to the level of monthly metrics. The problem of choosing the proper level of aggregation 

for analytical monitoring is identified and analytical models based on daily and weekly process 

metrics are empirically compared. The analysis shows that there is no universally preferable level 

of aggregation, but that the choice of aggregation is important, has to be made by the internal 

auditor, and will depend on the likely distribution of possible errors (with the more concentrated 

errors better identified by more disaggregated models). 

This research note compares the performance of several different analytical models, including 

the vector autoregressive (VAR) model that is capable of inferring the lags of relationships 

between business process metrics jointly with the model coefficients. It proposes a way of 

controlling this model’s complexity to prevent possible over-fitting, which the empirical 

evaluation shows to be successful, with the resulting subset VAR model often providing the best 

results. 

Finally, It simulates and evaluates the unique capability of continuous auditing to investigate (and 

possibly remediate) the identified anomalies in “pseudo-real time” (which, in the case of daily 

business process metrics, means on a daily basis). The assumption that an identified business 

process anomaly can be investigated by the auditors within 24 hours to identify and correct any 

problems is supported by the current practices in more advanced internal audit departments. 

The simulation study shows that pseudo-real time error corrections facilitates identification (and 

therefore correction) of more of the seeded errors, and thus the implementation of continuous 

auditing can lead to the increased effectiveness of audit procedures. The study shows that the 

implementation of pseudo-real time error correction provides effectiveness benefits 

complementary to the use of disaggregated business process data. This result can be used by 

internal audit departments to reorganize their workflow to enable near-real-time investigation of 

business process anomalies to improve efficiency and effectiveness of audits. 

This paper is organized as follows. The next section provides a review of the relevant 

literature. Then the paper describes the design and implementation of continuous data level auditing 

systems, followed by the discussion of how to aggregate transactional data, and how to construct 

analytical benchmark models using three different statistical methods. The last section compares the 
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ability of the continuous data level auditing systems to detect anomalies under various settings, 

introduces the pseudo-real time error correction protocol and discusses the results. The paper 

concludes by summarizing the results. 

LITERATURE REVIEW 

This paper draws from and contributes to multiple streams of literature in system design, 

continuous auditing and analytical procedures.  

Continuous Auditing 

Groomer and Murthy (1989) and Vasarhelyi and Halper (1991) pioneered the two modern 

approaches toward designing the architecture of a CA system: the embedded audit modules and the 

control and monitoring layer, respectively. The literature on CA since then has increased 

considerably, ranging from the technical aspects of CA (Kogan et al. 1999, Woodroof and Searcy 

2001, Rezaee et al. 2002, Murthy 2004, Murthy and Groomer 2004, etc.) to the examinations of the 

economic drivers of CA and their potential impact on audit practice (Alles et al. 2002 and 2004, 

Elliott 2002; Vasarhelyi 2002, Searcy et al. 2004). Kogan et al. (1999) propose a program of research 

in CA. In the discussion of the CA system architecture they identify a tradeoff in CA between 

auditing the enterprise system versus auditing enterprise data. A study by Alles et al. (2006) develops 

the architecture of a CA system for the environment of highly automated and integrated enterprise 

system processes, and shows that a CA system for such environments can be successfully 

implemented on the basis of continuous monitoring of business process control settings. A study 

published by the Australian Institute of Chartered Accountants (Vasarhelyi et al, 2010) summarizes 

the extant state of research and practice in CA.  However, few empirical studies have conducted on 

CA in general and on analytical procedures for CA in particular due to the general lack of data.  This 

paper contributes to the CA literature by providing empirical evidence to illustrate the advantages of 

CA in close to “real time” problem resolution.  

Analytical Procedures 

PCAOB Auditing Standard No. 15 (paragraph 21) defines Analytical Procedures (AP) as the 

“evaluations of financial information made by a study of plausible relationships among both financial and nonfinancial 

data”. SAS 56 requires that analytical procedures be performed during the planning and review stages 

of an audit, and recommends their use in substantive testing in order to limit the subsequent testing 

of details to areas of detected concern. That sequence is dictated because manually undertaken tests 
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of detail are costly, and therefore they are resorted to if the account balance based AP tests indicate 

that there might be a problem.  

There is an extensive research literature on analytical procedures in auditing. Many papers 

discuss various analytical procedures ranging from financial ratio analysis to regression modeling that 

focus on highly aggregated data such as account balances (Hylas and Ashton 1982, Kinney 1987, 

Loebbecke and Steinbart 1987, Biggs et al. 1988, Wright and Ashton 1989, Hirst and Koonce 1996). 

The percentages of errors found using such analytical procedures are usually not high, varying 

between 15% and 50%. Only a few papers examine analytical procedures for more disaggregated 

data. Knechel (1985(b)) provides a stochastic model of error aggregation starting with the level of 

individual transactions up to the level of account balances. Dzeng (1994) compares 8 univariate and 

multivariate AP models using quarterly and monthly financial and non-financial data of a university, 

and concludes that disaggregated data yield better precisions in a multivariate time-series based 

expectation model. Other studies also find that applying AP models to higher frequency monthly 

data can improve analytical procedure effectiveness (Knechel 1985(a), 1986 and 1988, Chen and 

Leitch 1998 and 1999, Leitch and Chen 2003, Hoitash et al. 2006). By contrast, Allen et al. (1999) 

use both financial and non-financial monthly data of a multi-location firm and do not find any 

supporting evidence that geographically disaggregate data can improve analytical procedures. 

This study focuses on operational internal audit and builds a data level CA system which 

utilizes analytical procedures applied to even more highly disaggregate daily metrics of business 

processes (BP). It investigates several different probabilistic models of business processes to serve as 

the audit benchmark: the Linear Regression Model (LRM), the Simultaneous Equation Model 

(SEM), and Vector Autoregressive Model (VAR). The use of SEM in analytical procedures has been 

examined by Leitch and Chen (2003), but only using monthly financial statement data. Their finding 

indicates that SEM can generally outperform other AP models including Martingale and ARIMA. 

Vector Autoregressive Model has not been fully explored in the auditing literature. There are 

a number of studies utilizing univariate time series models (Knechel 1986 and 1988, Lorek et al. 

1992, Chen and Leitch 1998, Leitch and Chen 2003), but only one, by Dzeng (1994), which uses 

VAR. Dzeng concludes that VAR is better than other modeling techniques in generating expectation 

models, and he specifically recommends using Bayesian VAR (BVAR) models.  The VAR model can 

not only represent the interrelationships between BPs but also capture their time series properties. 

Although (to the best of our knowledge) VAR has been discussed only once in the auditing 
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literature, studies in other disciplines have either employed or discussed VAR as a forecasting 

method (see e.g., Swanson 1998, Pandher 2002). Detailed statistical development of the VAR 

methodology and related issues can be found in Enders (2004). 

DESIGN AND IMPLEMENTATION OF A CONTINUOUS DATA LEVEL 

AUDITING SYSTEM 

Continuous Data Level Auditing System Design 

The objective of a CA system designed in this study is to provide close to real-time 

assurance on the integrity of certain enterprise BPs. As in conventional auditing, such a system can 

utilize two different types of procedures: those monitoring BP controls and those substantively 

analyzing BP transactions. As Alles et al. (2006) indicate, BP control monitoring requires that the 

client possesses a modern integrated IT infrastructure, and faces challenges even then. They also 

show that today few firms have the type of tight, end to end system integration that continuous 

control monitoring depends upon. This paper focuses on designing a CA system for the much more 

common enterprise environment in which data is derived from multiple legacy systems that lack 

centralized and automated controls. This lack of a control based monitoring system is why the 

proposed CA system is data-oriented instead, and the provision of assurance is based on verifying 

transactions and on BP based analytical procedures. Where the IT environment allows, CA would 

ideally encompass both continuous (data level) assurance (CDA) and continuous control monitoring 

(CCM). 

The architecture of the data level CA system is driven by the procedures it has to implement. 

While the subject matter it deals with is quite different from that in conventional auditing, one can 

view its procedures as analogous to automated substantive audit procedures such as detailed 

transaction testing and analytical procedures. Therefore, the two main components of the CA 

system are those executing automatic transaction verification and automatic analytical BP 

monitoring, as shown in Figure 1.  

[Insert Figure 1: Architecture of Continuous Data Level Auditing System here] 

An important innovation in the proposed architecture of the CA system presented in Figure 

1 is the utilization of analytical monitoring as the second (rather than the first) stage of data analysis. 

In conventional (manual) auditing, testing transactional details is very laborious and has to be based 

on statistical sampling to control the cost of auditing. Therefore, analytical procedures are utilized 
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first for the identification of areas of concern to focus the sampling on. In CA, which utilizes 

automated transaction verification tests, there is no need for sampling, since automated tests can be 

easily applied to the complete population of business transactions.  

The implementation of the transaction verification component of the CA system is based on 

identifying BP rules and formalizing them as transaction integrity and validity constraints. Every 

recorded transaction is then checked against all the formal rules in the component, and if it violates 

any of the rules, then the transaction is flagged as an exception. Every exception generates a CA 

alarm in the CA system, which it sends to the appropriate parties for resolution. Since the alarm 

specifies which formal BP rules are violated by the exception, resolving exceptions should be a fairly 

straightforward task. Once the transaction data is verified, it is in an acceptable form to be screened 

for anomalies by the analytical monitoring component. 

 The analytical monitoring component uses as benchmarks stable probabilistic relationships 

between aggregated BP metrics. The configuration of this component requires the following choices 

to be made based on the analysis of historical transaction records: 

 The choice of BP metrics to monitor such as the cost of the ordered goods, the quantity of 
the delivered goods, and the dollar amount of payments to vendors; 

 The level of aggregation of BP metrics such as daily or weekly; 

 The particular AP statistical model to estimate stable relationships between BP metrics such 
as linear regression, SEM or VAR, and 

 The acceptable range of variation for every monitored BP metric. 

The chosen AP is used to calculate the expected value for every BP metric. If the difference between 

the observed and the predicted value of the BP metric is outside the acceptable range of variation, 

then this value of the BP metric is flagged as an anomaly. The choices described above cannot be 

made a priory and will differ depending on the circumstances and the past behavior of BPs of a 

particular enterprise.  

Business Data Warehouse 

A salient feature of the architecture proposed in Figure 1 is the Business Data Warehouse 

which serves as the data integration point for the disparate (mostly legacy) systems in the enterprise 

system landscape. Enterprise systems that support key BPs routinely collect business process data in 

the unfiltered highly disaggregated form. If the enterprise has implemented an integrated ERP 

system, then BP data is readily available in the ERP central database. However, the most common 

current situation is that the enterprise system landscape consists of a patchwork of different systems, 
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many of which are legacy ones and are often file-based. In such enterprise systems direct real-time 

access to BP data is highly problematic, if at all possible at any reasonable expense of time and 

effort. Therefore, a data-oriented CA system usually cannot be cost-effectively deployed in such 

environment unless the enterprise deploys an overlay data repository commonly known as “Business 

Data Warehouse”. This is a relational database management system specially designed to host BP 

data provided by the other enterprise systems, including the legacy cycle-focused ones (such as sales 

processing or accounts receivable). The upload of BP data to the data warehouse usually takes place 

on the daily basis, and even more often in some enterprise environments. 

While the main functionality of a data warehouse is online analytical processing, the CA 

system developed here relies only on its function as the global repository of BP data. The availability 

of disaggregated BP data makes it possible for the auditor to access any raw, unfiltered and 

disaggregated data that is required for the construction and operation of the proposed CA system. 

Data Description  

Our simulated implementation of the data-oriented CA system focuses on the procurement-

related BPs and utilizes the data sets extracted from the data warehouse of a healthcare management 

business with many billions of dollars in assets and close to two hundred thousand employees. It is a 

major national provider of healthcare services, with a network composed of locally managed 

facilities that include numerous hospitals and outpatient surgery centers in the US and overseas.  

The organization provided extracts from their transactional data warehouse which, while 

only a sample limited in time and geography, still encompassed megabytes of data, several orders of 

magnitude more detailed than anything typically used in a standard audit. The data sets include all 

procurement cycle daily transactions from October 1st, 2003 through June 30th, 2004.1 The number 

of transaction records for each activity ranges from approximately 330,000 to 550,000. These 

transactions are performed by ten facilities of the firm including one regional warehouse and nine 

hospitals and surgical centers.  The data was first collected by the ten facilities and then transferred 

to the central data warehouse in the firm’s headquarters.  

                                                 
1 Only older data was available from the client given their privacy concerns. The age of the data has little effect on our 
research since its purpose is to determine how continuous auditing of population data will change audit practice and not 
to analyze this particular data set.  
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Transaction Verification 

When auditors have access to population data, the first step is to undertake tests of details to 

detect violations of key controls. Once that is done the auditor can turn to determining whether 

there are anomalies that do not violate any established controls but which may be nonetheless 

indicative of potential problems, such as a proliferation of cash deposits just under the $10,000 

federal Cash Transaction Reporting limit.  

When implementing the transaction verification component we first identify the following 

three key BPs in the supply chain procurement cycle: ordering, receiving, and voucher payment.  

Since this data is uploaded to the business’s data warehouse from the underlying legacy system, there 

are numerous data integrity issues, which have to be identified by the transaction verification 

component of the CA system before the data is suitable for AP testing. To simulate the functionality 

of the transaction verification component, we formally specify various data validity, consistency, and 

referential integrity constraints, and then filter through them all the available transactions. 

Two categories of erroneous records are removed from the data sets: those that violate data 

integrity and those that violate referential integrity. 

i. Data integrity violations include but are not limited to invalid purchase quantities, 
receiving quantities, and check numbers.2  

ii. Referential integrity violations are largely caused by many unmatched records among 
different business processes. For example, a receiving transaction cannot be matched 
with any related ordering transaction. A payment was made for a non-existent 
purchase order.  

An additional step in the transaction filtering phase is to delete non-business-day records. 

Though some sporadic transactions have occurred on some weekends and holidays, the number of 

these transactions accounts for only a small fraction of that on a working day. The existence of these 

transactions violates enterprise rules, and therefore such transactions are in fact exceptions, and 

should trigger alarms. Additionally, if these non-business-day records were left in the sample, they 

would inevitably trigger false alarms simply because of low transaction volume, thus introducing 

noise in our detection models 

The client firm considered the list of exceptions identified at this stage as a major source of 

value added from the project. It is to be anticipated that as legacy systems are gradually superseded 

                                                 
2 We found negative or zero numbers in these values which cannot always be justified. 
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by the firm’s ERP system with automated controls, the transaction verification component of the 

CA system will be detecting fewer and fewer problems.  

Business Process Based Analytical Procedures 

The implementation of the analytical procedure (AP) component of the CA system requires 

creation of the models of expected behavior to enable anomaly detection.  We call such expectation 

models continuity equations (CE), a term defined in Alles et al (2008): “… as stable probabilistic 

models of highly disaggregated business processes.” 

 To develop a CE model, a business process metric is calculated over a subset of transactions 

corresponding to intervals along some important BP dimensions (such as time, region, product, 

customer, etc.). Since the relationship between the metrics holds only probabilistically, the model 

also has to specify the acceptable range of variation of the residuals. An anomaly arises when the 

observed values of the metrics result in residuals which fall outside this acceptable range. Every 

anomaly generates a CA alarm in the CA system, which it sends to the appropriate parties for 

resolution.3 A rating of the seriousness of the anomaly could also be passed along to these parties. 

In contrast with an exception, which is associated to an individual transaction, an anomaly is 

associated with a subset of transactions used to calculate the value of the metric. Therefore, the 

resolution of an anomaly is not straightforward. Moreover, an anomaly is not necessarily indicative 

of a problem, since it can be due to statistical fluctuation or have legitimate business reasons. For 

example, in a business where the weekly amount of orders ranges between $100,000 and $200,000, a 

week with the total amount of orders worth only $10,000, as well as the following week with the 

total amount of orders worth $300,000 will both be statistical anomalies. While the investigation of 

the former may show that the decrease in the orders is due to computer problems in the 

procurement department, and thus is not nefarious, the investigation of the latter may reveal some 

unnecessary orders placed by a local manager eager to use up the budget before the deadline. As this 

example indicates, creating a metric that will prove effective in detecting BP problems is not a trivial 

task since it must be based on what is “usual” for a BP. The appropriate model will be derived from 

the population data which has been first filtered to remove exceptions.  

                                                 
3
 For example, while a deposit over $100,000 would automatically trigger money laundering audit, three deposits of 

$35,000 within in a week could be a suspicious activity or anomaly. It can be legitimate or just a move to avoid the audit. 
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The next section investigates three probabilistic models that can serve as candidates for the 

CE benchmarks of the firm’s supply chain processes: a Simultaneous Equation Model (SEM), 

Vector Autoregressive (VAR) models, and a Linear Regression Model (LRM).  

ESTIMATION OF CONTINUITY EQUATIONS 

Before developing a probabilistic model as a candidate for the CE benchmark of the 

procurement BP, there are several parameters to be determined that shape the overall approach 

towards model estimation. These include the choice of BP metric, the extent to which data is 

aggregated, and how the model estimation changes dynamically as new data is obtained. Once those 

parameters are chosen, attention can turn to the CE estimation.  

Overall Parameters of Continuity Equation Estimation 

Choice of Business Process Metric 

A critical issue in modeling BPs analytically is the choice of BP metrics. The traditional 

accounting choice has been the use of financial measures (e.g., dollar amounts), driven in the first 

place by the reliance on ledger entries as the primary source of data. In a data environment where 

disaggregate data is available, modeling BPs can also be undertaken using other types of non-

financial metrics such as physical measurements or document counts, as well as the traditional dollar 

amounts of each transaction, or the number of transactions processed. In this study, the primary 

experiment utilizes the traditional financial metrics, while the transaction item quantity is selected as 

the BP metric in the additional experiment that shows the robustness of our approach with respect 

to the choice of BP metrics and demonstrates how APs can utilize multiple metrics to examine 

transaction flows. 4 Auditing on different metrics would enable auditors to detect a more diverse set 

of patterns of firm behavior. Once the BP metrics are chosen, the next step is to determine the 

appropriate degree of aggregation at which to construct the CE based benchmark.   

Data Aggregation 

The main argument against using aggregated data is that it inevitably leads to a loss of 

information about individual transactions. Thus, investigating an anomalous aggregated BP metric 

requires an examination of a large number of transactions that were aggregated to calculate the 

metric. But aggregation can also make it possible to see more general patterns. There has been 

                                                 
4 The advanced audit decision support systems used at AT&T (Vasarhelyi and Halper 1991) provided views of different 
variables if chosen by the auditor including: number of calls, minutes, dollars and modified dollars). 



13 

 

extensive debate in the profession over how and to what extent to aggregate transactional data, and 

whether to use ledger accounts as a means of summarizing data. In a disaggregated data 

environment and with the technical ability to process such large data sets, the degree and nature of 

aggregation is now a choice that is open to auditors to make, rather than one forced on them by 

technological constraints.  

The main statistical argument for aggregation is that it can reduce the variability observed 

among individual transactions. For example, the transaction amount can differ greatly among 

individual transactions, as well as the lag time between order and delivery, and delivery and payment. 

By aggregating the individual transactions, this variance can be significantly reduced, thus allowing 

more effective detection of material anomalies. Thus aggregation facilitates the construction of more 

stable models than otherwise would be feasible to derive based on data sets with large variances. 

Unstable models would either trigger too many alarms or lack the detection power. On the other 

hand, if individual transactions are aggregated over a longer time period such as a week or a month, 

then the model would fail to detect many abnormal transactions because the abnormality would be 

mostly smoothed out by the longer time interval. Thus, the tradeoff is that the more aggregated the 

metrics are, the more stable the analytical relationships are likely to be at a price of more missed 

detection. In the meantime, any anomaly involving a metric with higher level of aggregation, requires 

a more extensive (and expensive) investigation of the larger subpopulation of transactions if an 

alarm is triggered. Daily and weekly aggregations used in this analysis are natural units of time that 

should result in a reasonable trade-off between these two forces. Aggregation can be performed on 

other dimensions besides the time interval, and the choice of the aggregation levels has to be made 

on a case by case basis considering the inherent characteristics of the underlying transactional data.  

This study uses intermediate aggregates of transactions, such as aggregates of transactions of 

different units in the enterprise, aggregates of transactions with certain groups of customers or 

vendors. Traditional substantive testing is done either at the most disaggregated level, or at the most 

aggregated level. Substantive tests of details of transactions are done at the most disaggregated level 

of individual transactional data, but this is done in order to verify the correctness of that individual 

transaction rather than to gain a perspective of the overall business process. Tests of details of 

account balances are applied at the most aggregated level. All standard APs are used for analyzing 

the account balances or the largest classes of transactions. As the results show, analysis of 

intermediate aggregates can provide more confidence when making audit judgments about 
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anomalies and give the auditor a means of thinking about the underlying business process as a 

whole. 

As discussed above, dollar amounts of purchase orders and vouchers are selected as the 

primary metric for testing.  We also use the shipment quantity aggregates in the sample since the 

dollar value isn’t available for shipment. After excluding weekends and holidays and several 

observations at the beginning of the sample period to reduce noise in the sample, there are 180 days 

of observations in the data sets for each business process. Summary statistics of the data used in the 

analysis are presented in Table 1. 

[Insert Table 1 here] 

Online Model Learning Protocol 

One distinctive feature of analytical modeling in CA is the automatic model selection and 

updating capability that has the potential to assimilate the new information contained in every 

segment of the data flows and adapt itself constantly.  

The online model learning protocol utilized in this study is shown in Figure 2. Each newly 

updated analytical model is used to generate a prediction only for one new segment of data. In the 

first step shown in Figure 2, data segments from 1 through 100 are used to estimate the model and 

to predict the new segment 101. After that, the new segment (101) is used together with the 

previous dataset to infer the next model. If the size of the previous dataset is small, the new segment 

is simply added without removing the oldest one from the dataset, as shown in Figure 2. After the 

dataset used for model inference becomes sufficiently large, it may be preferable to use the “sliding 

window” approach, in which the size of the training dataset is kept constant, and the addition of a 

new data segment is combined with removing the oldest one. This model updating procedure is 

expected to improve prediction accuracy and anomaly detection capability if the business process is 

changing. The sliding window (also known as moving window or rolling window) approach is 

commonly used in forecasting when underlying processes are expected to experience structural 

changes. The choice of optimal size of this window is usually problem dependent, and various 

approaches have been studied in the literature (see e.g., Pesaran and Timmermann 2007). Since our 

dataset is limited to only nine months of observations, we keep increasing the size of the training 

part one segment at a time and never discard the oldest segments. Thus, the approach implemented 

here should be properly termed “growing window”. 
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[Insert  Figure 2: Model Updating Protocol here] 

Candidate Models for Continuity Equations 

Simultaneous Equation Model 

In SEM we specify the daily aggregate of order amount as the exogenous variable while the 

daily aggregates of receiving quantity and payment amount are endogenous variables. Time stamps 

are added to the transaction flow among the three business processes. The transaction flow 

originates from the ordering process at time t. After a lag period Δ1, the transaction flow appears in 

the receiving process at time t+ Δ1. After another lag period Δ2, the transaction flow re-appears in 

the voucher payment processes at time t+Δ2. One can utilize various lag sample statistics such as the 

mode, the median, and the mean, as lag estimates. Our results indicate that the mode estimate works 

best for the simultaneous equation model. In our sample the mode of the lags equals one day. 

We divide our data set into two groups. The first group consisting of the first 100 days is 

categorized as the training set and used to estimate the model. The second group consisting of the 

remaining days is categorized as the hold-out set and used to test our model. The simultaneous 

equation model estimated on the training set is as follows: 

 -1 1

-1 2

 0.005*   

  87.147*   

t t

t t

receive order e

voucher receive e

 


 
 

where 
order  = daily aggregate of dollar amounts for the purchase order process 
receive = daily aggregate of transaction quantity for the receiving process 
voucher = daily aggregate of dollar amounts for the voucher payment process 
t = transaction time 

The R2 for the equations are 0.74 and 0.71 respectively, which indicate a good fit of data for 

the simultaneous equation model. It is important to point out some limitations associated with SEM. 

First, the lags have to be separately estimated and such estimations are not only time-consuming but 

also prone to errors. Second, the SEM is a simplistic model. Each variable can only depend on a 

single lagged value of the other variable. For example, voucher can only depend on receivet-1 even 

though there is a strong likelihood that it can also depend on other lagged values of the receive 

variable. Due to these limitations, there is a need to develop a more flexible CE model.  
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Vector Autoregressive Model 

Unlike in the case of SEM, in the case of VAR, no lag estimation is necessary, and every 

variable can depend on multiple lagged values of the variables in the model. Only the maximum lag 

period needs to be specified. All possible lags within the period can be tested by the model. We 

select 13 days as the maximum lag because 90% of the lags of all the individual transactions fall 

within this time frame.  

Again we split our data set into two subsets: the training set and the hold-out set. SAS 

VARMAX procedure is used to estimate the large VAR model. Despite the fact that this model is a 

good fit, the predictions it generates for the hold-out sample have large variances.5 In addition, a 

large number of the parameter estimates are not statistically significant. We believe the model suffers 

from the over-fitting problem. Therefore, we apply a step-wise procedure shown in Figure 3 to 

restrict the insignificant parameter values to zero and retain only the significant parameters in the 

model. First, we determine a p-value threshold for all the parameter estimates.6 Then, in each step, 

we only retain the parameter estimates under the pre-determined threshold and restrict those over 

the threshold to zero, and re-estimate the model. If new insignificant parameters appear, we restrict 

them to zero and re-estimate the model. We repeat the step-wise procedure several times until all the 

parameter estimates are below the threshold, resulting in a Subset VAR model.  

[Insert  Figure 3: Multivariate Time Series Model Selection here] 

The step-wise procedure ensures that all the parameters are statistically significant and the 

over-fitting problem is largely eliminated. One of the estimated Subset VAR models is expressed as: 

ordert = 0.24*order t-4 + 0.25*order t-14 +  1.364*receive t-6 + eo 

receive t= 0.27*order t-3+ 0.49*order t-5 + 0.49*voucher t-8 + er 

vouchert =0.539*receivet-1 + 0.174*ordert-9 + ev 

Thus, the over-parameterization problem can be resolved by step-wise procedures to 

transform the general form VAR into Subset VAR. However, it requires auditors’ time and 

judgment to reduce the general form VAR model into Subset VAR model, which is antithetical to 

the automated nature of the CA system.  

                                                 
5 The MAPEs for predictions of Order, Receive, and Voucher variables are all over 54%, much greater than the MAPEs 
of SEM, LRM and the subset VAR model. Refer to Section V for MAPE definition. 
6 If the  p=15% threshold is used , the resulting VAR models have the overall best prediction accuracy. 
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Recent developments in Bayesian statistics, however, allow the model itself to control 

parameter restrictions. The BVAR model includes prior probability distribution functions to impose 

restrictions on the parameter estimates, with the covariance of the prior distributions controlled by 

“hyper-parameters”. In other words, the values of hyper-parameters in the BVAR model control 

how far the model coefficients can deviate from their prior means and how much the model can 

approach an unrestricted VAR model (Doan et al. 1984, Felix and Nunes 2003). The BVAR model 

can relieve auditors from the burden of parameters restriction to derive the Subset VAR model. 

Thus, in this study we utilize both the BVAR and Subset VAR variants of the VAR model. 

Linear Regression Model 

In LRM we specify the lagged values of daily aggregates of transaction amounts in the order 

process and the transaction quantity in receive process as two independent variables respectively, 

and the voucher payment amount aggregate as the dependent variable. Again, the mode values of 

lags in individual transactions are used as estimates for the lags in the model (i.e. 2 day lag between 

the ordering and voucher payment processes, and 1 day lag between the receiving and voucher 

payment processes).   No intercept is used in the model because all the voucher payments are 

processed for delivered orders.  

Again the first 100 days of our data are set as the training subset to estimate the model. The 

estimated linear regression model is: 

 vouchert = 0.179* ordert-2 + 59.69* receivet-1 + et 

The estimate of the coefficient of the order variable is statistically insignificant (p>0.0441) 

while the coefficient of the receive variable is significant at 99% level (p<0.0001). 

ANOMALY DETECTION COMPARISON ACROSS CE MODELS 

Having developed candidate expectation models for the procurement BP we then determine 

how well each fits the data and detects seeded errors in order to choose the optimal CE 

specification. A detected anomaly can only indicate the presence of a problem, and cannot pinpoint 

the problem itself, while a failed test of detail (for example, a negative confirmation or a 

reconciliation failure) does, but only if the auditor knows which data items to test. BPs can break 

down for a variety of reasons, some “real”, meaning at the business process level itself, and some 

“nominal”, meaning that even if the integrity of the underlying business process is not 

compromised, the CE may fail to represent that.  
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An example of a “nominal” violation would be a slowdown in the delivery of shipments due 

to changes in macroeconomic factors, which results in a broken CE model due to a shift in the value 

of the time lag. This is not indicative of a faulty BP, but an inevitable outcome of trying to fit the 

changing reality into a benchmark constructed using obsolete data. Thus, the auditor’s investigation 

is bound to identify this situation as a false positive, unless the CE model is able to adapt 

accordingly. 

The CE model is expected to signal the presence of anomalies in cases where the underlying 

BP is compromised, as for example when a strike affects a supplier or when a raw material becomes 

scarce. The purpose of using CE-based AP tests is to detect these process problems and then to 

generate a signal for the auditor to investigate the reasons for these anomalies through a targeted 

investigation of details in as real time as possible. This shows the advantage of using the most 

disaggregated metrics possible to narrow down the scope of the auditor’s investigation as much as 

possible. On the other hand, the more disaggregated the metrics are the less stable will be the CE 

relationship. This is the tradeoff between the level of disaggregation of the metrics and the stability 

of the CEs, as the results of this study demonstrate. It is likely that the stability of relationships will 

vary widely between companies, processes, products, and times of the year. 

Prediction Accuracy of CE Candidate Models 

It is desirable for expectation models to make forecasts as close to actual values as possible.  

Many prior AP studies evaluate expectation models in terms of prediction accuracy (Kinney 1978, 

Wild 1987, Dzeng 1994, Allen et al. 1999, Chen and Leitch 1998, Leitch and Chen 2003). Following 

this line of research, we compared the prediction accuracies for the CE models in this study using a 

measure of prediction accuracy called Mean Absolute Percentage Error (MAPE). Additionally, we 

compared the CE models on their error detection ability.  

MAPE is a commonly used metric of prediction accuracy. It is expected that a good model 

should have a small MAPE. The training set is first used to estimate each of the models. Then, each 

estimated model is used to make one-step-ahead forecasts and the forecast variance is calculated. 

After that, the model is updated based on the new data feeds in the hold-out set and the previous 

steps are repeated. Finally, all the absolute variances are summed up and divided by the total number 

of observations in the hold-out sample to compute the MAPE. The results for MAPE of Voucher 

predictions are presented in Table 2. 
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[Insert Table 2 here] 

The results indicate that as measured by the MAPE metric the prediction accuracies of these 

models are close. The LRM has the best prediction accuracy (MAPE=0.3877), followed by the 

Subset VAR model (MAPE=0.3919), though the standard deviation for the LRM is slightly higher 

than that of the Subset VAR. BVAR model’s prediction accuracy is 0.4208. The SEM has the lowest 

prediction accuracy of 0.4352. These prediction accuracies indicate that the forecasts generated by 

the expectation models usually differ from the reported amounts by approximately 40%. 

There are no universal criteria to determine whether these prediction accuracies are good or 

not because MAPE values are data dependent. Prior studies (Kinney 1978, Wild 1987, Chen and 

Leitch 1998) on expectation models indicate that large variances exist in prediction accuracies when 

different data sets are used. The MAPE values reported in Wild’s (1987) study range from 0.012 for 

Cost of Goods Sold prediction to 7.6 for Cash and Security prediction using the same expectation 

model. Our conclusion is that by the MAPE metric, all candidate CE models show promise as 

benchmarks for AP tests.  

It is conceivable that if a longer time series were available then the use of the larger window 

for estimating CE models would result in lower MAPE values if the underlying BPs had low 

variability. In the case of higher variability BPs, one can attempt to achieve lower MAPE by 

increasing the level of aggregation of BP metrics. However, while it is desirable to achieve lower 

MAPE values, the ultimate measure of goodness of CE models for analytical monitoring is their BP 

problem detection ability. 

BP Problem Detection Ability of CE Candidate Models 

 The rationale for constructing a CE-based AP test is to enable the effective detection of BP 

problems. In the context of this study, the detection capability of the CE models is measured using 

two metrics: the number of “false positive errors” and the number of “false negative errors”.7  A 

false positive error, also called a false alarm or a Type I error, is an anomaly detected by the model 

that is just a statistical fluctuation and has no underlying BP problem. A false negative error, also 

called a type II error, is a BP problem not detected by the model as an anomaly. While a false 

positive error can waste auditor’s time and thereby increase audit cost, a false negative error is 

usually more detrimental because of the material uncertainty associated with the undetected 

                                                 
7 For the presentation purposes, we also include the tables and charts showing the detection rate, which equals 1 minus 
the false negative error rate. 
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anomaly. An effective AP model should keep both the number of false positive errors and the 

number of false negative errors at a low level. 

To compare the anomaly detection capabilities of the CE models under different settings  a 

simulation approach known as “seeding errors” is used that provides the benefits of a controlled 

experiment. Since anomaly detection is designed to capture problems that are not detectable using 

transaction verification, in the seeded error simulation the effect of such unknown problems is 

modeled by modifying some randomly chosen actual values of utilized BP metrics by certain 

quantities. An AP model that has perfect BP problem detection abilities should identify all the 

modified values (i.e. those into which the errors were seeded) as anomalous, and should not identify 

any of the non-modified values as anomalous. This seeded error simulation makes it possible to 

measure the BP problem detection capabilities of an imperfect AP model by calculating the number 

of false positive and false negative errors that the model generates. 

We test how the error magnitude can affect each AP model’s anomaly detection capability 

with five different magnitudes used in every round of error seeding: 0.1%, 0.5%, 1%, 2% and 4% of 

the total voucher balance. The entire error seeding procedure is repeated ten times to reduce 

selection bias and ensure randomness. More specifically, for each round of error seeding in the daily 

aggregates, we randomly select eight days in the hold-out voucher amount sample to seed errors of a 

particular size. The original amounts in each of these eight days are then replaced with the seeded 

error modified amounts. For example, if a 2% error is seeded, the date 168 is selected, and $100,000 

payments are made on that day, then $100,000 is replaced with $102,000. We expect a good 

detection model to identify this seeded error and red-flag the date 168. The same approach is used 

for the weekly aggregates. 

Prior AP studies discuss several investigation rules to identify an anomaly (Stringer 1975, 

Kinney and Salaman 1982, Kinney 1987, Knechel 1986). A modified version of the statistical rule 

(Kinney 1987) is used in this study. Prediction intervals (PI), equivalent to a confidence interval for 

an individual dependent variable, are used as the acceptable thresholds of variance. If the value of 

the prediction exceeds either the upper or lower limits of the PI, then the observation is flagged as 

an anomaly. 

The selection of the prediction interval is a critical issue impacting the effectiveness of the 

AP test. The size of the prediction interval is determined by the value of the significance level α. 

Choosing a low α value (e.g. 0.01), leads to wide tolerance boundaries (i.e. large prediction interval) 
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and a resulting low detection rate. On the other hand, if a high α value is selected, then the 

prediction interval will be overly narrow and many normal observations will be flagged as anomalies. 

To solve this problem, two approaches to select the prediction interval percentages were followed. 

In the first approach, α values are selected to control the number of false positive errors in various 

models. More specifically, an α value is selected which is just large enough to yield two false positive 

errors in the training data set. In the second approach, which is the traditional one, predetermined α 

values, 0.05 and 0.1, are used for all the expectation models. The α value of 0.05 is used in the 

tabulated anomaly detection results to compare all of the CE models on a level ground. 

Before this methodology can be used to compare the CE models, another critical issue needs 

to be addressed that only arises in a CA setting: real time error correction.  

Pseudo-Real Time Error Correction 

 An important distinction between CA techniques and standard auditing that was 

explored in this project is what we call “Pseudo-Real Time Error Correction”. In a real world CA 

environment when an anomaly is detected, the auditor will be notified immediately and a detailed 

investigation, if relevant, can be initiated. In theory, the auditor can then have the ability to complete 

the investigation and (if necessary) to correct the error before the next round of audit starts. The 

duration of the audit round will determine the precise meaning of “pseudo-real time”. This duration 

will depend on the natural rhythm of the business process and the utilized CA methodology. In 

more advanced internal audit departments, such as the one in a large South American bank (Aquino 

et al. 2013), the monitoring and resolution of identified anomalies is accomplished on the daily basis. 

For example, if the amount of returned checks or payment cancelations in a branch exceeds a 

predetermined value, an investigation is initiated to reveal by the next day if this occurrence is due to 

any problem, or just an unusual fluctuation. In such cases “pseudo-real time” refers to 24 hours. In 

other circumstances “pseudo-real time” can be as long as a week, if it turns out that the weekly BP 

metrics are most suitable for analytical monitoring. 

 Whether this technical possibility can or will be carried out in practice depends both 

upon the speed at which error correction can be made and the more serious issue of the potential 

threat to auditor independence of using data in subsequent tests that the auditor has had a role in 

correcting. These issues clearly require detailed consideration, but doing so is beyond the scope of 

the current study. What we focus on here is quantifying the benefits of pseudo-real time error 

correction in a CA environment, i.e., the technical implication for AP in CA if errors are indeed 
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detected and corrected in pseudo-real time. Specifically, in the error correction process, if a seeded 

error is detected, we substitute the seeded error with the true value (the original value in our data 

set). The new error free data is used to update the CE model and continue the anomaly detection 

process. For comparison purposes, we test how our candidate CE models work with and without 

pseudo-real time error correction. Unlike in CA, anomalies are detected but usually problems are not 

corrected immediately in traditional auditing. To simulate this scenario, we don’t correct any errors 

we seeded in the hold-out sample even if the AP model detects them.  

One can argue that it is possible in principle to utilize error correction in traditional auditing. 

However, since traditional auditors will have to investigate all the anomalies at the end of the audit 

period, the time pressure of the audit is likely to prevent them from rerunning their analytical 

procedures and conducting additional investigations over and over again to detect additional 

anomalies after some previously detected problems are corrected. 

[Insert Table 3 here] 

The results in Table 3 show that, in terms of BP problem detection, all of the four CE 

models have excellent detection capability when the error size equals to 2% or 4% of voucher 

account balance. With the error correction protocol, the CE models’ false negative error rates are 

close or equal to zero. When the error size is at 1% level, SEM continues to exhibit excellent 

detection capability with the false negative error rate at 0.025 followed by LRM at 0.2125. BVAR 

and Subset VAR have higher than 50% false negative error rates. If the error size drops to 0.1% and 

0.5% level, all of the models have high false negative errors. Overall, the results show lower false 

negative error rates for all CE models with error correction, especially when the error magnitude is 

1% or more. This finding is consistent with the prior expectation. As for the false positive rates, all 

of the CE models except SEM have close or equal to zero error rates. It is not surprising to see that 

SEM generates higher false positive error rates because it has relatively low false negative rates at 

0.1% and 0.5%. BVAR, Subset VAR and LRM with error corrections have fewer false positive 

errors than their counterparts without error corrections. The non-correction SEM model has better 

false positive rate than the correction model. It means that the error-correction SEM models can 

detect more anomalies but at a cost of triggering more false alarms. However, a further investigation 

reveals that the false alarms are mostly caused by certain records in the holdout sample, which are 

called in this study “original anomalies”. These original anomalies are very likely to be caused by 

measurement errors since our dataset consists of un-audited operational data. This measurement 
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error problem with non-audited data is also reported by previous studies (Kinney and Salamon 1982, 

Wheeler and Pany 1990). Because the non-correction model would not correct those undetected 

errors, the impact of original anomalies, whose values remain constant, would be eclipsed by the 

increase in seeded error magnitude. Therefore, the non-correction model would trigger fewer false 

alarms when the magnitude of seeded error increases. On the other hand, the impact of original 

anomalies would not decrease as the error-correction model would correct all detected errors.  

In summary, the error-correction models have better BP problem detection performance 

than the non-correction models. Thus, the real time error correction protocol can improve the 

detection performance, and the enabling of this protocol is an important benefit of CA.8 

Disaggregated versus Aggregated Data 

This study examines if the use of disaggregated data can make CE models perform better. 

Data can be aggregated on different dimensions, and we compare the efficacy of CE based AP tests 

using temporal disaggregation. 

 In the temporal disaggregation analysis we examine the differential anomaly detection 

performances using weekly versus daily data through three different approaches. First, errors are 

seeded into the weekly data in the same fashion as in previous daily simulations. We only use the 

weekly aggregates assuming that daily data are not available.  In our second and third approach, we 

follow prior studies (Kinney and Salamon 1982, Wheeler and Pany 1990) in the choice of methods 

to seed weekly errors into the daily sample. In the best case scenario, the entire weekly error is 

seeded into a randomly selected day of a week. In the worst case scenario, the weekly error is first 

divided by the number of working days in a week and then seeded into each working day of that 

week. In addition to the different aggregation levels, the error-correction and non-correction models 

are again compared to verify if the previous findings still hold. Due to the scope of this study we 

only use a single α value 0.05 in all models.  

[Insert Table 4 here] 

                                                 
8
 The stochastic nature of both the underlying business process and error seeding imply that the improvement in 

performance is not a deterministic outcome. For example, if the value of the business metric of the day randomly chosen 
for error seeding happens to be abnormally low, then the increase resulting from adding the error will bring that daily 
value closer to the expected one, and the subsequent model update may benefit more from utilizing the uncorrected 
value rather than the corrected one. Overall, as the results show, the error correction does improve the performance, but 
this is true only in the probabilistic sense. 
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The results presented in Table 4 are generally consistent with our expectations. Weekly 

aggregation results in Table 4 indicate that the detection capability of all CE models suffers when 

using the weekly aggregates. Compared with daily aggregates, the false negative error rates for weekly 

aggregates are very high even when the error magnitude reaches 2% level. This shows the benefit of 

disaggregated modeling and supports our expectation that continuous auditing at the daily level can 

detect more anomalies than that at the weekly or monthly levels.  

All the CE models perform the best using the best case scenario data. The false negative 

error rates are close to or equal to zero for all CE models at 2% and 4% error size. At 1% error 

magnitude, the SEM and LRM exhibit strong detection capability. However, all the models have the 

poorest anomaly detection performance using the worst case scenario data. This result is not 

surprising because the weekly error is spread evenly into each day making the seeded error act as a 

systematic error which is almost impossible to detect (Kinney 1978). Across the three types of 

sample tests (weekly, weekly best case and weekly worst case), we find that error correction models 

are still better in BP problem detection than the non-correction models.  

[Insert Table 5 here] 

Table 5 presents false positive errors for the tests using weekly, weekly best case and weekly 

worst case data. We find that weekly aggregates trigger more false alarms than daily aggregates for all 

CE models except BVAR. The weekly best case data gives the lowest false positive error rates for all 

CE models except SEM. The test results from the worst case scenario suggest that very few false 

alarms are triggered but it is achieved at the cost of low detection rates.9  

CONCLUSION 

The purpose of this paper is to demonstrate how audit practice may change when auditors 

have access to real time population data, how to use real world data to develop APs for CA, and 

compare different analytical procedures in a CA context.  

Our research shows that there can be significant changes in the role and sequence of audit 

procedures. When data access is not a constraint, tests of detail can be carried out first on the 

complete population data to find exceptions to controls and for transaction verification. Then APs 

can be used, again, on the complete population data, to find anomalies. The use of APs in this way 

                                                 
9 We conducted a large number of robustness tests including the use of non-financial metrics (transaction item quantity), 
and aggregating data on the geographic dimension. Results are similar to those reported in the paper. Full details are 
available from the authors.  
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can result in more effective audits, but that depends on the construction of empirical models of BPs 

so that normality can be defined from which anomalies are detected. A variety of parameters shape 

the development of these CE models, including the choice of metrics, the degree of aggregation, and 

how the models are updated dynamically.  

This study shows that while there are differences in the predictive ability and detection 

performance of various CE models, all models perform reasonably well and no single model 

performs better on all aspects. From this two important conclusions can be drawn:  

First, the choice of a particular model across the candidate CE models is less important than 

the fact that all models yield fairly effective AP tests.  Because of its automated nature, it is quite 

feasible and even desirable for the continuous data level audit system to use benchmarks based on 

multiple CE models instead of being forced to select only one, as would be necessary in a more 

manual system. For example, the SEM can be used first to detect anomalies because it has a low 

false negative error rate. Subsequently, the BVAR and the LRM can be used to remove the false 

alarms from the SEM-detected anomalies because these two models have relatively low false positive 

error rates.  

Our second conclusion from the fact that all the CE models yield reasonably effective 

analytical procedures is that when auditors have access to complete transaction data, the richness of 

that disaggregate data combined with the reorganization of auditing workflow to implement pseudo-

real time error correction makes BP problem detection robust across a variety of expectation 

models. In other words, it is the nature of the data that serves as audit evidence that is the primary 

driver of audit effectiveness, with the selection of the specific AP a second order concern—not 

because the audit benchmark is not important, but because auditing at the process level makes 

anomalies stand out much more obviously in the data. 
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Figure 1: Architecture of Continuous Data Level Auditing System  
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Figure 2: Model Updating Protocol 
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Figure 3: Multivariate Time Series Model Selection 
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 Table 1: Summary Statistics 

   Variable N  Mean  Std Dev Minimum Maximum 

    

   Order 180  1076911.56 605393.82 342202.4 4549114.60 

   Receive 180  8876.26 3195.16 4430  31412.00 

   Voucher 180  869595.80 591950.79 12107.96  7026331.26 

The table presents the summary statistics for the dollar amount daily aggregates for each Order and Voucher process 

and transaction quantity for the Receive process. The data sets span from 10/01/03 to 06/30/04. Many related 

transactions for the Receive and Voucher for the first 2 days in the data sets may have happened before 10/01/03. 

 

Table 2: MAPE Comparison among BVAR, Subset VAR, SEM and Linear Regression 
Model: Prediction Accuracy for Daily Dollar Amounts Aggregate of Entire Company’s 
Vouchers 

 

 MAPE Std. Dev Min Max 

BVAR 0.4208 0.4334 0.0119 2.6829 

Subset VAR 0.3919 0.4271 0.0061 3.6514 

SEM 0.4352 0.6135 0.0062 5.1651 

LRM 0.3877 0.4594 0.0044 3.8854 

 

MAPE:     Mean Absolute Percentage Error 
Std. Dev:  Standard deviation for Absolute Percentage Error 
Min: The minimum value for Absolute Percentage Error 
Max:    The maximum value for Absolute Percentage Error 
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Table 3: Error Rates Comparison between Error-correction and Non-correction Using 

Dollar Amounts, α=0.05, 0.1%, 0.5%, 1%, 2%, 4% of account bal. 

 False Positive False Negative 

 Error 

Magnitude 

Error 

Correction 

Non-

Correction 

Error 

Magnitude 

Error-

Correction 

Non-

Correction 

Bayesian 

 

VAR 

0.1% 0.0139 0.0139 0.1% 1 1 

0.5% 0.0153 0.0153 0.5% 0.975 0.975 

1% 0.0153 0.0153 1% 0.5625 0.6375 

2% 0.0153 0.0153 2% 0.0125 0.0375 

4% 0.0153 0.0167 4% 0.0125 0.0125 

Subset 

 

VAR 

0.1% 0.0139 0.0139 0.1% 1 1 

0.5% 0.0139 0.0139 0.5% 0.9375 0.9375 

1% 0.0139 0.0139 1% 0.5375 0.5375 

2% 0.0139 0.0139 2% 0 0.0125 

4% 0.0139 0.0139 4% 0 0 

SEM 0.1% 0.09 0.09 0.1% 0.8625 0.8625 

0.5% 0.0843 0.06 0.5% 0.375 0.4125 

1% 0.09 0.0471 1% 0.025 0.025 

2% 0.0857 0.0329 2% 0.0125 0.0125 

4% 0.0829 0.0057 4% 0.0125 0.0125 

LRM 0.1% 0 0 0.1% 0.975 0.975 

0.5% 0 0 0.5% 0.8875 0.8875 

1% 0 0 1% 0.2125 0.3125 

2% 0 0 2% 0 0 

4% 0 0 4% 0 0 
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Table 4: False Negative Error Rates Comparisons (Weekly, Weekly Best Case, Weekly 
Worst Case) Dollar Amounts, α=0.05, 0.1%, error sizes=0.5%, 1%, 2%, 4% of account 
balance 

 Error 

Magnitude 

Weekly Aggregation Weekly Best Case  Weekly Worst Case  

Error-

Correction 

Non-

Correction 

Error-

Correction 

Non-

Correction 

Error-

Correction 

Non-Correction 

BVAR 0.1% 1 1 0.975 0.975 0.99 0.99 

0.5% 1 1 0.975 0.975 0.99 0.99 

1% 1 1 0.575 0.6 0.99 0.99 

2% 1 1 0.025 0.025 0.99 0.99 

4% 0.625 0.775 0.025 0.025 0.98 0.99 

Subset 

VAR 

0.1% 0.9 0.9 0.975 0.975 0.99 0.99 

0.5% 0.9 0.9 0.925 0.925 0.99 0.99 

1% 0.9 0.9 0.425 0.525 0.99 0.99 

2% 0.775 0.775 0 0 0.98 0.985 

4% 0.075 0.4 0 0 0.865 0.88 

SEM 0.1% 0.85 0.85 0.9 0.9 0.985 0.985 

0.5% 0.775 0.8 0.475 0.675 0.975 0.975 

1% 0.75 0.775 0.05 0.05 0.945 0.945 

2% 0.175 0.25 0.025 0.025 0.86 0.88 

4% 0 0.05 0.025 0.025 0.37 0.53 

LRM 0.1% 0.95 0.95 1 1 0.99 0.99 

0.5% 0.95 0.95 0.95 0.95 0.985 0.99 

1% 0.925 0.95 0.2 0.275 0.985 0.985 

2% 0.675 0.75 0 0 0.95 0.95 

4% 0 0.275 0 0 0.57 0.705 
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Table 5: False Positive Error Rates Comparison (Weekly, Weekly Best Case, Weekly Worst 
Case) Dollar Amounts, α=0.05, 0.1%, error sizes=0.5%, 1%, 2%, 4% of account balance 

 Error 

Magnitude 

Weekly Aggregation Weekly Best Case  Weekly Worst Case  

Error-

Correction 

Non-

Correction 

Error-

Correction 

Non-

Correction 

Error-

Correction 

Non-

Correction 

BVAR 0.1% 0 0 0.0118 0.0118 0.0133 0.0133 

0.5% 0 0 0.0132 0.0132 0.0133 0.0133 

1% 0 0 0.0132 0.0132 0.0133 0.0133 

2% 0 0 0.0132 0.0132 0.0133 0.0133 

4% 0 0 0.0132 0.0132 0.0133 0.0133 

Subset 

VAR 

0.1% 0.1231 0.1231 0.0118 0.0118 0.0133 0.0133 

0.5% 0.1385 0.1385 0.0118 0.0118 0.0133 0.0133 

1% 0.1385 0.1462 0.0118 0.0118 0.0133 0.0133 

2% 0.1769 0.1692 0.0118 0.0118 0.0133 0.0133 

4% 0.1692 0.2461 0.0118 0.0118 0.0133 0.0133 

SEM 0.1% 0.1077 0.1077 0.0919 0.0919 0.0283 0.0283 

0.5% 0.1077 0.0923 0.0892 0.0689 0.0383 0.0383 

1% 0.0923 0.0769 0.0919 0.0581 0.0367 0.0383 

2% 0.1077 0.0769 0.0878 0.0392 0.0383 0.0383 

4% 0.1077 0.0769 0.0851 0.0135 0.0383 0.0383 

LRM 0.1% 0.0615 0.0615 0 0 0.0133 0.0133 

0.5% 0.0615 0.0615 0 0 0.0133 0.0133 

1% 0.0615 0.0615 0 0 0.0133 0.0133 

2% 0.0615 0.0615 0 0 0.0133 0.0133 

4% 0.0615 0.0615 0 0 0.0133 0.0133 

 


