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SUMMARY: This study extends the existing research in analytical procedures by al-
lowing for learning from contemporaneous information transfers among peer compa-
nies. We introduce an approach for selecting peers for each client and perform tests
to examine the contribution of peers' information to the performance of analytical pro-
cedures. We find that peer data are imperfect substitutions for contemporaneous firm-
specific variables when such variables are not in error. However, we observe that con-
temporaneous peer specific data are especially beneficial whan coordinated errors exist
in multiple accounts. We demonstrate that when errors are seeded into two contem-
poraneous accounts, peer models perform better at detecting errors. We also find that
fast-changing companies experience inferior prediction and error detection accuracy,
and that larger companies experience more accurate prediction, lower Type Il errars,
and higher Type | errors. Additionally, we observe that significant improvements in the
performance of analytical procedures are associated with farger clients indicating that
auditors of larger companies can potentially benefit more from the use of peer data.

Keywords: analytical procedures; data management; information sharing; peers.

Data Availability: The data used in this study are available from public sources iden-
tified in the text.

INTRODUCTION
he Statement of Auditing Standard (SAS) No. 56 states that analytical procedures
are required in the planning and overall review slages of the audit, and are recom-
mended during substantive testing (American Institute of Certified Public Account-
ants {ATCPA] 1988). Analytical procedures are defined as the diagnostic process of iden-
tifying and determining the cause of unexpected fluctuations in account balances and
financial ratios. The benefits associated with analytical procedures are considered substantial
if they are proven to reduce the most expensive audit task (namely, the test of details),
decrease the risk that a matenial error will go undetected, and if they are constructed o be

stable across companies and time horizons.
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The demise of Arthur Andersen and recent business scandals within Enron and
WorldCom have also prompted the profession to address the issue of audit effectiveness.
Though it was always in the interest of policy makers to improve the quality of audits, the
recent scandals provide outside pressure to develop and refine innovative audit techniques
including continuous auditing and information sharing in the auditing process. The current
paper examines the potential use of a data management system that allows for learning
from contemporaneous information transfers among peer companies (o improve the per-
formance of analytical procedures. Specifically, we examine whether the inclusion of con-
temporaneous account balances from peer companies as independent variables in the ex-
pectation model contribules to the improvement of prediction accuracy and of the
performance of error detection.

Previous studies examined various ways to improve the performance of analytical pro-
cedures. A number of these studies document that statistical techniques such as X-1]
(Dugan et al. 1985), Vector Autoregression (Dzeng 1994), and structural models (Chen and
Leitch 1998; Wild 1987) can be used to improve the prediction performance of account
balances and ratios. Additional studies concentrate on other factors that result in prediction
improvements such as looking at single industry companies (Wheeler and Pany 1990), and
using disaggregated multilocation data (Allen et al. 1999). Lev (1980), Loebbecke and
Steinbart (1987), Wild (1987), and Allen (1992) offer evidence to support the fact that
exogenous industrial and economy wide data improve the predictive ability of regression
based analytical procedures. Further papers investigate the increased effectiveness of using
higher frequency data. Cogger (1981), Knechel (1988), and Dzeng (1994) find that the use
of monthly data greatly enhances the effectiveness of these models.

The objective of this study is to use an empirical approach to examine whether infor-
mation transfer of contemporaneous variables among peer companies results in improved
prediction and error detection. The study investigates whether account balance expectations
that are generated using contemporaneous peer data result 1 supenior prediction and error
detection performance in comparison to those that are derived using only company specific
data. This study examines three research questions. We first examine whether models that
include peer data lead to improved prediction accuracy. We observe that peer data is ex-
tremely useful when no other contemporaneous variables are included. However, the inclu-
sion of contemporaneous data from peer companies does not always contribute to the
prediction performance when other contemporaneous variables are included. Our second
research question looks at the contribution of peer data to the prediction performance when
coordinated errors exist,! We find that when coordinated errors are present, models that
incorporate peer data are better able 1o moderate the impact of these errors yielding mar-
ginally betwer prediction results. Our third research quesdon examines the error detection
performance when coordinated errors exist. Our results indicate that the inclusion of peer
dala helps considerably in detecting errors. Thus, while peer data does not always improve
the prediction accuracy, ils contnbultion (o the error detection performance is substantial.

The major contributions of this srudy include, first, an investigauon of the performance
of industry-wide analytics, including analytics for rapidly changing industries. Previous
studies have primarily documented the performance of analytical procedures within a nar-
rowly defined scope, concentrating on single companies within stable industries. Secondly,
this paper presents a new approach for peer-based information transfer within the context
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We define coordinated errors as errors/iregularilics that exist in muhiple related accounts.
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of analytical procedures. Finally, this paper introduces a dynamic peer selection approach
for the purpose of performing analylical procedures.

BACKGROUND, MOTIVATION, AND RESEARCH QUESTIONS

Many previous studies concentrate on various ways to improve the performance of
analytical procedures. Several studies look at the ideal level of temporal aggregation for
analytical procedures by performing analytics on annual, quarterly, and monthly observa-
tions. In general, prior research finds that the higher the frequency of the data used, the
better the prediction and error detection results. Wild (1987) and Dzeng (1994) show that
using monthly observations, rather than quarterly and annual data, results in improved
account balance predictions. However, Wheeler and Pany (1990) suggest that using monthly
data might result in inferior predictions due to the reduction in data reliability. They state
that although quarterly data are not fully audited, the audilor does review them. whereas
monthly data are not reviewed at all. In contrast, Chen and Leitch (1998) assert that the
use of monthly data is more in line with the business cycle of many companies, and
therefore month-to-month relations should yield better prediciions.

Additional studies concentrate on using more sophisticated statistical lechniques to
generate more accurate and precise predictions. Dugan et al. (1985) propose the X-11 Model
as an analyucal procedure technique for auditors. This model was later used by Wheeler
and Pany (1990) and by Chen and Leitch (1998), and was found not to be superior to
multivariate regression models. Another study (Dzeng 1994) introduces Vector Autoregres-
sion (VAR) as a possible (ool for performing anaiytical procedures and finds thal VAR
performed slightly better than a multivariate regression model. Structural equations were
used as an analytical procedure tool by Wild (1987) and by Chen and Leitch (1998). Both
studies conclude that the prediction performance of the structural model is not significantly
better than that of muitivariate stepwise regression models. More recently, Leitch and Chen
(2003) examine the error detection performance of analytical procedures by looking at
coordinated errors. Specifically, they study errors jointly by examining error patterns that
are seeded into more than one account. In the current paper, we adopt a similar approach
and examine the marginal contribution of peer data in improving the error delection ca-
pability for accounts with coordinated errors.

Data availability 1o auditors has historically been a hurdle for including more contem-
poraneous variables in expectation models. Therefore, auditors and researchers have tradi-
tonally used company specific contemporaneous data in addition to publicly available data
but did not use contemporancous data from peer companies. Using data from peer com-
panies in similar industries requires auditors 1o have these data readily available prior to
the audit. However, at the time of the audit, conlemporaneous data points from peer com-
panies are not publicly available. In this study, a simulated database repository” for industry
auditing 1s constructed using industry-wide data. The data management approach is moti-
vaied by the fact that many Big 4 accounting firms audi¢ multiple companies in each
industry, and consequently have access to their proprietary information. These auditors
could theoretically use data from one or more peer companies (o improve predictions for
another peer company. Thus. once the constraint of data availability is relaxed, and the use
of information systems to facilitate data exchange is introduced, it becomes valuable to
assess the polential contribution of contemporaneous peer information to the performance

Database repository in this study refers to a central database system managed by & Lru§l6d [h"rdl party. Account
balance information from multiple companies that are audited by multiple CPA firms is wansmitted and stored

in that database.
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of analytical procedures. An additional desirable characteristic of this approach is that the
risk associated with the use of un-audited information (Wild and Biggs 1990) is somewhat
mitigated by the fact thal financial information is drawn from a different distribution and,
therefore, is independent.® Specifically, developing expectations using firm-specific data as
well as data from peer companies could help auditors in detecting errors when coordinated
errors exist.

We examine three research questions concerning the relative benefits of using peer
models in analylical procedures with respect to predictive performance and error detection.
We also evaluate the impact of company specific charactenstics and structural changes on
the performance of analytical procedures. This is done given the hypothetical scenario that
sharing information across audit firms is legal, or alternatively, that auditor-industry groups
are highly concentrated. We discuss the legal constraints as well as the technology require-
ments in the concluding section of the paper.

A number of previous studies thal concentrate on analyucal procedures examine the
use of multiple companies in similar industries (Allen 1992; AICPA 1988: Lev 1980;
Wheeler and Pany 1990) as well as the use of multi-location data (Allen et al. 1999) 1o
generate expectations, Other studies use lagged industry variables (Wheeler and Pany 1990)
and contemporaneous industry indexes (Chen and Leitch 1998). Allen (1992) employs a
joint expectation model with one set of coefficients for five electric ulility companies and
observes mixed results. He finds that pooled industry models are betier at predicting expense
accounts but inferior at predicting revenue accounts.

Additional evidence relating to the usefulness of industry dara exists in the literature
of industrial organization economics. A major argument in that literature is that the struc-
tural characteristics of industries are the primary determinants of firms’ performance
(Hawawin et al. 2003). Other studies within the accounung literature recognize that indi-
vidual companies experience structural similarities. These studies examine the issue of
accruals and abnormal accruals measurement under the assumption that companies should
be matched based on industry charactenstics (DeFond and Jiambalvo 1994), size within
industries (Perry and Williams 1994), or industry and performance (Kothari et al. 2005).
Thus, the recognition that both economic and industry factors impact companies is widely
accepted but seldom used within auditing research.

Both financial accounting and auditing research have studied information transfer and
auditor specialization across companies in similar industnies. The financial accounting lit-
erature primarily looks at earnings announcements’ effect on the stock prices of other firms
in the same industry. Foster (1981) looks at intra-industry share price effects and earnings’
estimales revisions on non-announcing firms. In the auditing literature, many studies (Taylor
2000; Kwon 1996; Wright and Wright 1997; Hogan and Jeter 1999) look at industry spe-
cialization and the effects of such specialization on audi performance, audit fees, and
economies of scale among other factors. Thos, while a number of auditing papers examine
the notion of knowledge transfer, our study concentrates on infermation transfer that is
achieved through the transfer of raw data. Many of the Big 4 CPA firms have adopted an
industry-auditing approach.” Using this approach, auditors share knowledge that they collect

* Earlier work by ljiri and Leitch (1980) examined Stein’s paradox (see also Efron and Morris 1973, 1977) in the
context of audit sampling. This research suggests that auditors could potentially reduce their composite risk by
using information and experience from multiple clients.

* Industry-auditing approach refers to the notion of sharing data, analysis, and experience across teams that work
in similar industries.
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in various audits in similar and interrelated industries but do not use proprietary data from
peer companies in the context of analylical procedures.

As Lev (1980) states, *“firms do not operate in a vacuum.” All firms are affected by
the same economy-wide factors such as inflauon rates and changes in the fiscal policy.
Additionally, firms that operate in similar industries are affecied by similar industry-wide
effects such as raw materials, wages, and energy costs. Therefore, when constructing a
prediction model, it is important (o consider economy and industry-wide effects as well as
firm-specific effects. Our first research question examines whether models with peer data
lead to different mean absolule percentage error (MAPE) in comparison to models that do
not incorporate peer data. The inclusion of contemporaneous industry variables is one way
to capture the well documented economic and industry-wide {actors affecting companies’
performance. Though the use of conlemporaneous induslry vanables has only been utilized
to a limited extent, past research suggests that the inclusion of such variables would con-
tribute to the performance of analytical procedures. The use of peer models is expected to
exploit cross sectional commmonalities and better preserve the structural relationships that
are generated in the estimation period throngh the holdout period.

Research Question 1: Do models that incorporale peer data generate smaller
mean absolute percentage errors?

It is often the case that contemporaneous account information is the best predictor of
another account within the same company. Specifically, the correlation between accounts
such as AR and Sales or COGS and AP is fairly high.® Therefore, it is possible that
additonal independent varables beyond the inclusion of contemporaneous accounts could
add little to the prediction accuracy. Yet, the use of unaudited information from other
accounts could potentially introduce an additional risk (Wild and Biggs 1990) that could
be mitigated if additional financial information is drawn from a different distnbution and,
therefore, is independent.® This risk could arise when an account thal is in error is used (o
predict another account. Therefore, in the second research question we examine the effect
of using unaudited information from one account that is in error to predict another account.

Research Question 2:  Can peer data moderate the impact of materially misstated
accounl balances on the prediction accuracy of related

accounts?

The purpose of the third research question is to test the error detection performance
when coordinated errors are present. I two accounts are in error (i.e., both sales and
accounts receivable are overstated), then utilizing one account to predict the value of another
account could potentially result in inferior error detection performance. The inclusion of
contemporaneous peer data has the potential of moderating this effect and helping auditors
identify errors more efficiently and effectively.

Are models that incorporate peer data better able to detect

Research Question 3:
errors when coordinated errors exist?

In our sample, the average Pearson correlation berween AR and SALES und between COGS and AP across our

industries is 0.939 and 0.844, respectively. s ; .
We should note that using un-audited data from other companies introduces a different kind of risk.
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METHODOLOGY

Data
For the purposes of this study, 18 industries that experienced various sales growth rates

from 1991-2002 were selected. These industres were chosen due to their diverse growth
characteristics and their membership in various economic sectors. For example, the selected
industries include the Steel Works & Blast Furnaces industry (Standard Industrial Classi-
fication [SIC] 3312) that experienced on average 3.4 percent annual growth during the
sample period. and the Pharmaceuncal Preparations industry (SIC 2834) that experienced
an average annual growth of 23.4 percent. Quarterly information for the total revenues, cost
of revenues, accounts receivable, and accounts payable was extracted from the Compustat
quarterly files for the period of 1991-2002. These accounts were chosen because of the
common treatment that they often receive across companies and their participation in the
two major business processes, the revenue, and the purchasing processes. Accounts such
as inventory’ would have presented addiuonal data constraints and would have further
limited our pocl of peers for each audit client. To remain in the sample, firms had to have
uninterrupted quarterly data for four years for each estimation as well as have year-to-year
sales growth of no more than 500 percent. Our final sample includes 5,747 quarterly ob-
servations. The selected industries are presented together with their average sales growth
in Table 1.

[n order (o simulate the data management system, we chose o gronp companies into
dynamic peer clusters. Companies in the same industry group are likely to have many
common charactenistics. Therefore, knowledge collected from client X that is audited by
firm { can potentally be used to perform analytical procedures for client Y that is audited
by any auditor that participates in the knowledge sharing system. At this stage. our imple-
mentation presumes that all auditors share information regarding their clients, and therefore,
the entire industry, as defined by the four-digit SIC code is examined.

Since even the most specific industry classification coding system is too general, the
current four-digit SIC coding system is further partitioned and peer companies are dynam-
ically chosen for each audit client. The process of identifying peer companies is done as
follows: Within each four-digit STC code, firms are ranked based on their sales (size proxy)
and their sales growth (change proxy). This ranking is done using the last audited period
of the estimation sample. Peers are selected for each company based on their size and
growth proximity to that company at a given tme. The iterative process of assigning peer
companies for each audit client within an industry persists until peers are selected or the
determination i1s made that there are no appropriate peers for the audit client. Using this
approach, the peer selection process results in a relatively homogenous group of peers for
each audit client. The current peer selection cnleria are different from the traditional clus-
tering approach in that while company A and C may be chosen as peers for company B,
company C may not be the best peer for company A. An illustration of the peer selection
process is described in Table 2 in which we demonstrate the process of assigning peers for
each company in an industry of ten companies for a specific audit year. A company is
assigned specific peers only if their size and growth rankings are both comparable to the
rankings of that company. This process may result in companies with no peers, and those
companies are subsequently dropped from the sample. While the companies examined may
differ along many dimensions, including their products, geographic locations, and other
economic factors, they are expected to share the same industry and economy-wide effects.

nventory and fixed assets accounts are often handled differently across companies.
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TABLE 2
An Tllustration of the Peer Selection Criteria
Sales
Growth Selected

Company Sales Rank . Rank _Peers

A 1 8 C

B 2 3 C,D

C 3 5 B,D.E

D 4 2 B.C.E

E 5 4 C.D.G

F 6 9 G,H

G 7 7 EFH

H 8 6 G,F

I 9 2 J

] 10 | 1

Within each four-digit SIC code, companies are ranked by their total revenues and revenue growth accounis. The
total size of the SIC group n represents the number of companies within each SIC code for a particular audit
year. In the above table n = 10 for SIC $38§ and year YYYY. The allowable proximity for each year is
determined as follows: sales have to be within Integer (n/3) of each peer. In the above example, locking for
peers for client E (sales rank = 5), polential peers will have a rank value berween 3 and 7. Additionally, the
sales growth rank was set o be Integer (n/4) allowing for more variation in the growth in comparison to

the size proxy. Therefore, potential peers [or client E will have sales growth rank between 1 and 7. Both
criterta—size and growth have to be met for each audii client in order to be considered as peers. For example,
in the above table peers for client E will be companies C, D, and G, whereas peers for client G will be E, F,
and H. As illustrated, each client is assigned peer companies in such a way that the peer relation 15 not
symumetric, and peer groups are therefore different from clusters. This process is repeated for each client in each

industry group. and is performed iteratively for each audit year.

The peer selection method that we propose is 1elatively crude in comparison to the analysis
that can be performed by practicing auditors.

Generating Monthly Observations

In previous studies, disaggregate monthly data performed better in analytical procedures
than did quarterly data points (Wild 1987; Chen and Leiich 1998; Cogger 198]); Knechel
1988; Dzeng 1994). A common difficulty with time series analysis is the tradeoff between
the need for sample size and the accuracy of the estimation models given the model’s
stability over long periods of time. Through using higher frequency data in the form of
monthly observations, it is expected that the prediction accuracy will be better. Using quar-
terly data requires the use of dara that represents information thar spans over eight years.
However, companies are operating in a dynamic environment, in which changes in iech-
nology, productivity, and labor cosl constantly occur. The use of quarterly data may result
in a well-specified model during the estimation period, but most likely, will result in inferor
out-of-sample predictions. Therefore, using monthly observations seems to be an appropri-
ate choice. Given that mouthly data is not readily available for a large number of companies.
a data inierpolation technique was used in this study.

A cubic splines interpolation was inroduced within the auditing literature by Chen and
Leilch (1998) and Leitch and Chen (1999). In the current study, cubic splines are used 10
interpolate monthly observations through the use of publicly available quarterly observa-
nons. From each of the four quarterly observations, 12 monthly points are generated and

Auditing: A Journal of Practice & Theory, November 2006




Peer-Based Approach Jor Analytical Procedures 61

later used as monthly data points. This process is performed for the 48 quarters from 1991 —
2002.%

Within the process of interpolating accounting data, il is important to distinguish be-
tween variables that are measured at points in time and variables that represent totals or
averages over an interval. The algorithm used for interpolating income statement accounts
must guarantee that the interpolated values sum up to the original value. In other words,
the totals of the three months in each quarter are sumnied up (o be equal to the quarterly
vaJue. In the mathematical equation, the weights are the coefficients of the cubic polyno-
mials used to inlerpolate the data. The coefficients define the line so that it passes through
each of the data points in a smooth way. The basic third degree polynomuial is defined in

Equation (1) as follows:
SX) =aX = XP +Db(X — X2+ (X - X)+d. (1)

Equation (1) can be used in its basic form (o interpolate accounts that are stocks (balance
sheel accounts); however, it needs (0 be shighly modified for the purpose of interpolaiing
flows (income statement accounts). This is done by constraining the three monthly obser-
vations in the income statement accounts to sum up to the quarterly value.

Modef Specification

As in most studies, we first use our models to predici the monthly account balances
and subsequently test the ability of these models to detect errors. The research questions
are tested by comparing the performance of peer-based models with a benchmark model.
We conipare the benchmark models in which expectations are denived using archival data
and firm-specific contemporaneous data with prediction models thal incorporate contem-
poraneous peer data.

The peer model specification examines the commonalities between a given company
and its group of peer companies by including a standardized industry/peer average 4as an
independent variable. To avoid the impact of company size on the peer average, a standard
Yiym' where Y represents a monthly

o3

account balance, and the mean and the standard deviation of ¥ are calculated dunng the
estimation period and are used (o calculate the standard score for each data point during
the estimation and holdout periods. The advantage of this approach stems from the fact
that on average companies behave similarly to their peers. In other words, companies’
accounts will, on average, experience similar changes and will therefore contribute to the
prediction performance for that company. Conversely, the assumption that the audit client
will typically experience similar changes to all of its peers is somewhat constraining because
this approach results in the loss of information due to the aggregation of peers’ data.®

We present our models in Table 3 in which peer models are estimated as depicted in
Models 2. 3, 4, and 5 and are compared (o the benchmark Models 6, 7, 8, and 9 respectively.
SALES, COGS, AR, and AP represent total revenue, cost of goods sold, accounts receivable
and accounts payable balances for month r. The /ND term in the peer models represents

score is calculated for each company as follows Z =

¥ To avoid issues with boundary conditions we actually use data from 1990-2003 for the interpolation process

and drop the first and the last years of data. ] .
S We also used an alternative peer model specification per Allen et al. (1999) 1,'3 \I-.'Im-h the raw CL')III(:'inﬁl"&]I‘]\'(ﬁJS
account halances from peer companies are included as independent variables. This approach allowed for different
relationships between audit client and each peer but often led to inferior predictions and error detection

performance.
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TABLE 3
Specification of Models
2z,
IND, = LI—
SALES, = a + B,SALES, 3 + BoIND, + g, (2)
SALES, =« * B|SALES:-J.2 + BZIND: + BJARr + el (3)
COGS, = o + B,COGS,_ 5, + B.IND, + &, )
COGS, = o + B,COGS,_ 5 + BIND, + B;AP, + ¢, (3)
(6)

SALES, = a + B,SALES, ; + ¢,
SALES, = a + B,SALES, |, + BAR, + ¢ (7

COGS, = a + B,COGS,_; - (8)
COGS, = o + B,COGS,_,, + B,AP, + &, (9)
MAPE, = a + B,CHANGE, + B,SIZE, + ¢, (10)
ERROR, = « + B,CHANGE, + B,SIZE, + ¥, (11)
MAPE, — DIFF, = a + B,CHANGE, + B,SIZE, + ¢, (12)

(13)

ERROR, — DIFF, = a + B,CHANGE, + B.SIZE, + e,

SALES, COGS, AR, and AP represent total revenue, cost of goods sold, accounts receivable and accounts
payahle balances for month . The JND term in the peer models represents the average standard score for a
group of peers and is calculated as depicted above. MAPE is the Mean Absolute Percentage Error for each
company year and ERROR is the sum of the monthly Type I or Type II errors for each company year. We define
CHANGE by using either the absolute average change in sales (Compustat quarterly data item 2) or EPS
(Compustat quarterly data item 19) of a company during each estimation period. S/ZE is measured as the log of
the quarterly total assets (Compustat quarterly data item 44). The dependent variable in Model 12, MAPE-DIFF,
is the difference in the MAPE between the benchmark model and the peer model. Similarly, the dependent
variable in Model 13, ERROR-DIFF, is the difference in the number of Type I or Type U errors between the

benchmark model and the peer model.

the average standard score for a group of pecrs and is calculated as descnbed above. [n all
the models, we use a 12-month lag term as an independent variable.

Test of Research Questions

Each regression model is estimated over 36 months or three years and is iested over
the subsequent 12 months. Every model is estimated separately for each company based
on its unique set of peer companies. The selection of 36 months as the training period and
12 months as the holdout period is simiar to the research design employed by many
previous stdies.

The peer regression models are estimaled separately for each company based on its
unique set of peers. The peer selection algorithm matches peers for each company in each
year throughout our sample period. For example, for the purpose of predicting account
balances for 1994, peers are identified based on data from the last quarter of 1993, whereas
data from 19911993 is used (o generate predictions. [n that manner, the process of se-
lecting peers and estimating the models is done separately nine times for each company
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for the years 1994-2002. Subsequently, we generate 12 monthly predictions for each com-
pany in our sample for each year-account from 1994-2002. A lotal of 12 monthly predic-
tions are created for each estimation year for each account totaling 216 predicted obser-
vations for each company-model.'® Figure | illustrales the steps that we follow in generating
our test data.

Prediction performance is evaluated based on examining the mean absolute percentage
error'' (MAPE) for each account-model. The MAPE is calculated for the out-of-sample
prediction for each account-company-month. The MAPEs for the 12-month period are
aggregated over company-year resulting in an aggregaled measure of MAPE for each
company-account-model. To evaluate the prediction performance of each model, results are
aggregated over each account-industry, resulting in one MAPE for every account-model-
industry. For example, each mode! is estimated separately for every company with its own
unique set of peers. For each company, a forecast for each account balance (such as rev-
enues) is generated for every month. An average of the MAPE is calculated over the entire
industry and 1s tested separately. To test whether the results generated by the peer model
are superior to the benchmark model, a Wilcoxon Rank-Sum test is perfarmed separately
for each industry over the prediction period of nine years. To assess the goodness of fit of
the models, the adjusted R? siatistics for each company model is calculaled and aggregated
to an industry average.

The prediction performance is evalualed for Models 2 through 9. In each case, we
estimate these models using independent and dependent vanables that are not in error.
However, for a subsel of our models, we do test the impact of the existence of errors in
the independent vaniables on the prediction accuracy. We therefore seed malenal errors into
the AR and AP accounts in Models 3, 5, 7, and 9 for the prediction year and use the
estimated coeflicients'? for calculating our expectations. The materiality definition that we
use is similar to the one used by Knechel (1988) and is set to be equal 10 2 percent of the
account value. We subsequently use MAPE to examine the impact of using an account
balance with material error to predict another account balance,

The third research question is examined by seeding errors into account balances and
evaluating the error detection performance of Models 3 and 5 in comparison to Models 7
and 9. Similarly to the approach adopted by Leitch and Chen (2003), we seed errors into
more than one account and evaluate which model can better identify these errors. We

concentrate on the following coordinated errors:

(1) Overstatement of AR and Tolal Revenues.
(2) Understatement of AP and Cost of Revenues.

Errors in these accounts are of parficular interest because these accounis are ofien
targeted for fraud and manipulation.'> We first estimate Models 3, 5, 7, and 9 using inde-
pendent and dependent variables with no errors. However, in order o test the third research
question we seed errors into firm-specific independent variables (i.e., seed errors into AR
in Model 3 during the prediction year) and use the estimated coefficients to calculate the

® The number of mc',mllli_\' predictions can vary based on data availability for each company.

I - |P,— A : . .
" MAPE = — _\: > —,| where P represents the predicted value, A represents the actual value, 1 is the
*12

2.3 A,
number of companies in each irlldusir_\' and j is the number of months predicted.

' These coefficients are generated based on data points that are not in error. -

1" A study by the Government Accountability Office (GAO 2002) found that lhe reason for 37.9 percent and 15.7
percent of nontechnical restatements between 1997 and June 2002 involve the revenue and expense accounts,

respectively.
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FIGURE 1
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forecasted account balance of the dependent variable. Following this approach, the predicted
value is generated using data that is in error. Subsequently, we seed errors into the actual
dependent variable and evaluate the performance of our models in detecting the existence/
absence of errors in that account. To perform this test we first calculate the confidence
interval around the estimated value and use a statistical investigation rule to evaluate the
error detection performance of the peer model and the benchmark model.™*

' Each confidence interval is caleulated separately for each account. This is different from Leitch and Chen (2003}
who generate joint bivariate confidence intervals for two accounts.
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The staustical investigation rule signals when the standardized difference between the
actmal and the predicted account balance exceeds the critical Z-value that is based on the
auditor’s specified risk level «. In the current study o = 0.05 and a = 0.33 were used.'’
An .im_'cslig;?ii(m \\-‘01.11d take place if (Y{ = }’__.'}z’.S_I 2= .Zl_u. where § is the base period standard
deviation of the series, Y, I the statistical investigation rule signaled that an error was
present when no error was seeded into the account balance, than a Type ] error occurred.
If the investigation rule failed to signal thal a maierial error was present when an account
balance was seeded with error, than a Type 11 error occurred.

RESULTS

In the first research question, we conjecture that account balance expectations that are
generated using peer models should result in more accurate predictions than expecrations
derived from company specific models. For that purpose, we evaluate the prediciions from
Models 2, 4, 6, and 8 that estimate the balance of the revenues series and the cost of sales
series. Prediction pecformance is evaluated by using a nonparametric test to evaluate the
differences between the mean absolule percentage errors of the peer and the benchmark
models. Panels A and B in Table 4 contain the resulis for the test of the first research
question for the total revenue and the cost of revenue series. As displayed in Table 4, results
suggest that peer data improves the prediction accuracy when such daia is added 1o rela-
tively simple models. Panel A presents the aggregate MAPE for each cne of the 18 indus-
tries using predictions from Models 2 and 6. In Panel A of Table 4, we observe that, when
comparnng peer models to benchmark models, 14 of the (8 industries experience prediction
improvements out of which eight differences are significant. Panel B of Table 4 displays
the prediction results for the cost of sales series. Using Models 4 and §, we observe that
11 industries experience more accurate prediciions, five of which are statistically significant.
However, the benchmark model is statistically superior to the peer model for four of the
I8 industries.
Table 5 displays the results for the second research question based on predictions from
Models 3, 5, 7. and 9. In the left side of Panel A we first display the prediction results for
the revenue series using Models 3 and 7. Using these models, we observe that in comparison
to the results of the revenue series in Panel A of Table 4 fewer industries experience
statistically significant improvement in prediction accuracy. In fact, the benchmark model
yields better results for a larger number of industries. This suggests that the contribution
of the peer data is diluted when contemporaneous firm-specific data is included in the
prediction model. However, because of the inherent risk associated with using independent
variables from the same distribution, we examine the prediction performance of Models 3
and 7 when the contemporaneous independent variable is materially misstated during the
holdout period. In the right side of Panel A we observe that the prediction performance of
peer models relative to the benchmark model improves when AR has a material error.'®

Panel B of Table 5 presents the prediction performance for the cost of sales series using
Models 5 and 9 and depicts a surprisingly similar pattern to the results in Panel B of Table
4. The same five industries experience a statistically significant prediction improvement in
comparison to the peer model. However, we observe that many industries experience su-
perior prediction performance using the benchmark model rather than the peer model. In

'-“i We also used a = 0.10 and obtained similar results. . e = .
'® We have assessed the potential presence of multicollinearity by exanuning the -‘“9“'“55“"_‘—'“ ot DHE md_L'PC”‘jC“'
bles and calculating the variance inflation factors (VIF) for a subset of our regressions. None of the cal-

culated VIF values exceeded 2.4 indicating that if multicollinearity 1s present. it should not impact our results.
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the right side of Panel B, we examine the impact of an error in the contemporaneous firm-
specific independent variable on the prediction accuracy and observe that peer models
somewhat mitigate the impact of the independeni variable that is in error on the overall
prediction accuracy.'’

In aggregate, research questions | and 2 establish that the predicrion performance as
measured by the MAPE is generally better when more variables are included in the pre-
diction model. We frst observe that peer data contributes significantly to the prediction
performance in Table 4 when the benchmark model relies primarily on historical data. When
we include additional independent contemporaneous predictors such as AR and AP, we
observe that the overall MAPEs in Table 5 are lower than the MAPEs in Table 4 indicating
that the out-of-sample predictions benefit from the inclusion of additional independent con-
temporaneous variables. We also observe in Tabie 5 that when the independent predictors
are materially incorrect, our predictions become less accurale. We also find that in the
better-specified models the contribution of the peer data to the prediction accuracy is di-
luted. Yet, we find that if these contemporaneous variables contain errors, it becomes val-
vable to include peer data in the prediction models. These results are consistent with the
fact that peer data are imperfect substitutions for contemporaneous firm-specific variables
when such variables are nol in error. Nomnetheless, they emphasize that the risk from using
account balances with coordinated errors could be redoced by using peer data.

Panels A and B of Table 6 present the results for the third research question examining
the error detection performance using simulated errors. We evaluate the error detection
using predictions from Models 3 and 7 (5 and 9 for the cost of sales) when coordinated
errors are present. Table 6 presents the results for simulaled coordinated errors seeded into
more than one account simultaneously, i.e., an account that is in error 1s vsed to predict
another account that is also in error. In Pane) A (Panel B) of Table 6 both the revenue
(COGS) and AR (AP) accounts are seeded with material errors. These tables present the
percentages of Type I and Type Il errors that occur when a statistical investigation rule is
used. The error detection performance is evalvated using different nsk levels to show the
tradeoffs between Type [ and Type II errors under each nsk level. Generally, lower a levels
lead to wider confidence intervals and consequently lead to fewer Type I etrors and a larger
number of Type I1 errors.

Both Panels 1n Table 6 indicate that peer models are often superior in preventing Type
[I errors but inferior in preventing Type [ errors. These results indicate that due 10 the
tighter confidence interval of the peer models, an auditor vsing the peer model would
experience more frequent Type I errors, requinng the auditor 10 perform additional inquiries
resulting in more expensive and less efficient audits. On the other hand, the peer model
oulperforms the benchmark model in detecting material deviations yielding lower Type Il
errors. Potentially, more precise predicuons coupled with tighter confidence intervals con-
tributed 1o these results. Hence, peer models are better at signaling the presence of material
errors and are inferior at signaling the absence of material errors. However, since auditors
are often more concerned with Type I1 errors than with Type I errors, examining the trade-
offs between the two is important.

Assessing the error delection performance can be easily achieved when a parricular
mode) leads o similar results for both error types. Thus, if the peer model leads to a smaller

"" A supplementary analysis of the goodness of fit of the models in Tables 4 and 3 shows that in all cases, the
adjusted R* is significantly higher for the peer models in comparison to the benchmark models. This implies
that peer models are consistently superior 1o the benchmark models during the estimation period but not always
during the hold-out period,
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percentage of both Type I and Type II errors, we can conclude that for (hat industry the
peer model 1s superior. However, when one error type is increasing while the olher is
decreasing, an additional analysis is needed to resolve this ambiguity. We define
BenchmarkTypel and II be the percentages of errors generated using the benchmark model,
PeerTypel ang /I be the percentages of errors generated using the peer model, and W(Typel)
as the additional work performed by auditors when an error is detected by the procedure
but no error actually exists, while W(Typell) represent the cost to auditors from not detecting
malerial error when such error exists. In order to conclude that the peer model is better
than the benchmark model, the following inequality between the tolal error costs must hold:

W{(Typel)*(BenchmarkTypel) + W(Typell)*(BenchmarkTypell)
> W(Typel)*(PeerTypel) + W(Typell)*(PerrTypell)

Rearranging this inequality for the case when BenchmarkTypel < PeerTypel. we obtain the
following condition for the peer model to be better than the benchmark model:

—(BenchmarkTypell — PeerTypell) — W(Typel)
(BenchmarkTypel — PeerTypel) ~ W(Typelly

Thus, the ratio of the two cost differences should determine the tradeoffs between the
two models in the case of ambiguity. More specifically, we need to calculaie the differences
in the error rates for each error type between the two models and use the absolute value
of the ratio of the differences (compared with W(7ypel)/ W(Typell)) as the determinant of
which model yields better results.

[t is documented in Table 6 Panel A that for @ = 0.05 the benchmark model is superior
for Ave indusiries while the peer model is superior in two of the 18 industries. The above
results represent cases in which both Type | and Type Il error rates were superior. We
proceed by analyzing the cases in which the overall benefits are ambiguous. We observe
that in Panel A of Table 6, the absolute value of the ratio of the two cost differences is
always greater than or equal to 0.5 indicating that even with a conservative assessment of
Type 1I error being only twice as expensive as Type I error, the error detection performance
of peer models is superior for the remaining 1] industries. Thus, for the revenue series, 13
of the 18 industries experience overall lower cost associated with error detection. Panel B
of Table 6 yields similar results for the cost of sales series. We observe that the peer model
is superior in one case while the benchmark model is superior in three cases. Additionally,
we observe that the absolute value of the cost ratio is greater than 0.5 in 12 additional
industries. Thus, 13 of the 18 industries experience superior error detection performance
when the peer model is used. Panels A and B of Table 6 also display the error deteclion
performance for « = 0.33 levels. We find that differences beiween the peer and the bench-
mark models remain constant across risk conditions.'®

ADDITIONAL ANALYSIS _
The results of our study rely on a particular peer selection approach. Alternative pro-
cedures such as using the entire industry as peers or a manual selection of peers might be

** We perform (he analyses in Tables 4, 5, and 6 using quarterly rather then interpolated monthly data and find
that these results are consistent with those tabulated in the paper. Examining the differences between monthly
and quarterly predictions, we find results that generally support the findings of previous studies that documented
that higher frequency data generally result in superior predictions,
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superior to our approach. Thus, we examine whether our proposed peers selection approach
is superior o using the entire industry as peers. We estimate Models 3 and 5 using the
entire industry as peers and compare the estimated results to our original peer-based pre-
dictions. We test the differences in the predictions together for the sales and cost of sales
accounts by industry. We find that MAPEs generated by the peer model are smaller for 11
industries out of which five are statistically significant. However, we also observe that using
the entire industry as peers leads (o statistically significant improvement over our proposed
approach for three industries. These results suggest that learning from specific peer com-
panies rather than the entire indusiry often leads to superor results. We believe that prac-
ticing auditors should be able o use their knowledge and expenence o select peers more
accurately. Nonetheless, more evidence is needed in order 1o examine compeling peer se-
lection criteria for empirical academic research.

Previous research did not examine the impact of analytical procedures on companies
experiencing rapid change. In fact, Allen (1992) suggests that many prior studies represent
“independent success stories” by conducling case studies within the context of the retail
and the manufacturing industnes. These studies mainly involved companies that are mem-
bers of a fairly stable group of industries that do not experience frequent structural changes.
Chen and Leitch (1998) studied analytical procedures using simulated data and found that
all models performed better for companies that have a greater degree of stability in their
business and economic activities. This suggests that there is a need to investigate ways in
which analytical procedures can be better applied to companies that are less stable and
experience a greater degree of performance fluctuation. The use of time series data in
regression models can capture systematic changes in account balances over time. However,
companies may grow over time in a nonsystematic manner. Consequently, predictions for
such companies are potentially more complex and more sensitive to longitudinal changes.
Generully, it 1s harder to forecast account balances for fast growing or contracting com-
panies. It is therefore expected that fast changing companies would experience inferior
prediction and error detection performance.

Since this study investigates the performance of analytical procedures for muliiple in-
dustries, we use this opportunity to examine whether company specific characleristics such
as size are associated with the prediction performance. We conjecture that large companies
are on average more stable and therefore their accounts are easier to predjct. Hence, we
expect that larger companies will experience greater prediction accuracy and superior error
detection performance. We also expect that peer data will be especially beneficial for rapidly
changing companies in comparison fo stable companies

Models 10 and 11 (in Table 3) are used to test the association between the prediction
accuracy and error detection performance to proxies that are associated with the rate of
change and size of a company. The dependent variables are the MAPE, which is the Mean
Absolute Percentage Error for each company year and ERROR, which is the sum of the
moonthly Type 1 or Type I{ errors for each company year. A surrogate for the level of change
of a company is consiructed by using the absolute average change in sales (Compustat
quartecly data item 2) and £PS (Compustat quarterly data item 19) of a company during
the estimation period, and the difference between the average rate of change in the esti-
mation years to the average rate of change in the prediction year. The latter measures the
changes between the period in which the model is developed and the period in which the
model is tested. We use the log of the quarterly total assets (Compustat quarterly data item
44) 10 proxy for size. The dependent variable in Model 12, MAPE-DIFF, is the difference
in the MAPE between the benchmark model and the peer model. Similarly, the dependent
variable in Model 13, ERROR-DIFF, is the difference in the number of Type T or Type II
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errors between the benchmark model and the peer model. In both cases, high difference
value indicates that the peer model is superior.

We use the prediction performance and the error detection performance for both the
revenue and cost of revenue accounts. Thus, we run our analyses using a pooled model
that contains predictions for both accounts. Panel A in Table 7 and Panels A and B in Table
8 present the results from Models 10 and 11, respectively. Results in Panel A of Table 7
are conststent with Chen and Leitch (1998) and overwhelmingly indicate that the level of
change, as measured by our four growth proxies, is positively associated with inferior
prediction accuracy (higher MAPE). Il is also apparent that larger companies experience
significantly lower MAPE indicating higher prediction accuracy. This is the case for both
the peer and the benchmark models. Panels A and B in Table 8 document similar analyses
for the Type I and Type II errors respectively. We observe that Jarger companies experience
higher Type I errors and lower Type I errors for both the peer and the benchmark models.
We also observe that both rate of change proxies are positively associated with higher
occurrence of Type II errors. However, while we do not observe a consistent pattern in the
association between the EPS rate of change and the occurrence of Type I errors, we do
observe that a faster change in sales is positively ussociated with Type I errors. Thus, our
analyses indicate that larger companies experience more accurate predictions and Type II
error detection coupled with inferior Type I error detectian. Additionally, companies with
faster revenue change experience an increase in both Type I and Type 11 errors.

We continue by examining the association between company size and rate of change
to the potential improvements attributed (o using models with peer data. We use Models
12 and 13 and report our results in Panel B of Table 7 and Panel C of Table 8. While both
MAPE-DIFF and ERROR-DJFF lack a consistent pattern for association with the rate of
change, we observe that company size is positively associated with the (mprovement in
MAPE and Type 1l error detection. Thus, we conclude that when auditing larger compantes,
auditors that use peer data could potentially improve their prediction accuracy and Type Il
error detection.

DISCUSSION AND LIMITATIONS

The study examines the potential benefits of using contemporaneous peer dala n per-
forming analytical procedures. We introduce an approach for selecting peers for each client
and perform a pumber of tests to examine peers’ contribution to the performance of ana-
lytical procedures. We use peer models in various ways and observe that peer dala is
extremely useful when no other contemporaneous variables are included. We also observe
that when other contemporaneous variables are included, peer data are still useful when
coordinated errors exist. Our resulis strongly indicate that using peer data is especially
beneficial for improving the overall error detection performance. Furthermore, the results
indicate that fast changing companies experience inferior prediction and error detection
accuracy, and that large companies experience more accurate predictions, lower T)_-'pe 1L
errors, and higher Type I errors. Moreover, we find that significant improven?cms in the
performance of analytical procedures are associated with larger clients suggesting that au- '
ditors of larger companies can potentially benefit more from the use of peer data.

Since audits are performed ex post (at the end of the period), auditors can currently
include contemporaneous information from peer companies in the expectation models.
Given the increasing industry/auditor concentration (Hogan and Jeter 1999), and thc; current
consolidation among the large public accounting companics, auditors that specialize in
certain industries can transfer information from one audit to the next and consequently
improve the effectiveness of their analytical procedures. Additionally, practicing auditors
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with multple clients could use their knowledge to better match peer companies and poten-
tially utilize more granular data such as business and geographic segment data to achieve
further improvements. _

The current legal regime requires auditors to protect clients’ data but does not forbid
auditors from using these proprielary data for their own analyses. Specifically, Rule 30t of
the American Institute of Certified Public Accounlants (AICPA) Code of Professional Con-
duct (1996) states that ““a member in a public practice shall not disclose any confidential
client informauon without specific consent of the client.” However, current rules do not
restrict auditors from using clhents® data to improve their audits. In fact, Guy and Carmichael
(2002) interpreted the Statement of Auditing Standard (SAS) No. 56 and stated that “In
circumstances where the auditor specializes in a specific industry, the anditor may use
clients’ data to develop plausible expectations (for example, gross margin percentage, other
income statement ratios, and receivable and inventory turnover ratios).”’ Additonally, there
is anecdotal evidence sugpesting that national offices of large audit firms use data from a
pool of companies in the same indusiry as a benchmark for other companies. The national
office distributes such aggregated data to engagement auditors but does not disclose the
exact profile of the companies that are used in the pool. Nonetheless, auditors need to be
cautious not to disclose any confidential information when they ask management (o provide
plausible explanations for account balances that deviate from their expected values. More-
over, auditors need to make sure that private information about one client is not disclosed
in the workpapers of another client because of the risk that this information could be
subpoenaed.

Despite the fact that sharing mformation across auditing firms is only theoretically
feasible, it is of great value to understand whether such an approach would result in im-
proved performance of analytical procedures. If sharing client information among auditors
is proven to significantly improve the performance of analytical procedures, then the au-
diting profession ought to consider advocating for a new regulation, under which peer
information could be made available through a trusted third party. There is a precedent for
this type of information sharing within the credit industry. In many countries, the credit
industry shares information among credit checking companies through information brokers
(credit bureaus). These brokers work on the principle of reciprocity, under which lenders
who do not provide data to the burean are denied access. Information sharing in the credit
industry results 10 increased competitiveness in the credit markets, increased efficiency in
asset allocaticn, and increased lending volume. Future regulatory initiatives within the au-
ditng profession, using the credit industry as 2 model, could consider providing cross firm
access to contemporaneous data through a trusted third party. Moreover, with the recent
advancements in enterprise systems and networking there is now a suitable automated
solution for employing peer-based analytics.

The technological ground for adopting the proposed peer-based approach for analytical
procedures is widely available. XBRL (eXtensible Business Reporting Language) is a lan-
guage for electronic communication of business and financial data. XBRL provides an
dentifying tag for each individual item of data (such as total sales), thus creating an un-
ambiguous way to identify financial facts and making it searnless to compare the sales (or
any other financial item) of one company to the next. Therefore, auditors can potentially
automate the process of XBRL data collection from multiple companies and securely trans-
it ihis information to a central dara repository. Hence, XBRL data from multiple com-
panies can be collected automatically and securely allow auditors to perform analytical
procedures that incorporate peer dala shorily after the data is received. The technology for
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incorporating XBRL is currently supported by major ERP vendors (i.e., SAP R/3 and
Oracle Financials), thus in many cases no additional software is needed. Because there is
one uniform conventional way for digitally exchanging data, no human intervention is
required. Therefore, using automated procedures, data from individual companies can be
included in the regression maodels without becoming available to any individual audit team
member, thus, helping auditors protect the confidentiality of their clienls® data.

It is important to note that the reported results suffer from a number of limitations.
Companies with no peers are dropped from the sample but still need (o be audited. The
reason for the elimination is the inherent limitation of automatically assigning peers Lo audit
clients. It is hikely that practicing auditors will be able to identify peers for most of the
eliminated companies or otherwise charge a premium over the standard audit fees o po-
tentially account for the additional risk and effort.

The results in this study should be carefully applied. The findings in this study are
based on interpolated data points and not on real data. While these results support our
conjectures of general prediction improvements and superior error detection, the accuracy
of these predictions may not be sufficient for the practicing auditor. The purpose of this
research was to study, in isolation, the prediction improvemeots that result from the incor-
poration of contemporaneous peer data. Any additional informalion that might be obtained
through inquiry by an experienced auditor s not captured in our analysis. Thus, it is hkely
that the reported effectiveness of our models in detecting errors is estimated conservatively.
Yet, our results strongly support the premise of information sharing across and within

auditing firms and warrant further investigation.
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