
19

JOURNAL OF INFORMATION SYSTEMS
Vol. 19, No. 1
Spring 2005
pp. 19–41

Financial Reporting and Auditing Agent
with Net Knowledge (FRAANK)

and eXtensible Business Reporting
Language (XBRL)

Matthew Bovee
The University of Vermont

Alexander Kogan
Rutgers, The State University of New Jersey

Kay Nelson
The Ohio State University

Rajendra P. Srivastava
The University of Kansas

Miklos A. Vasarhelyi
Rutgers, The State University of New Jersey

ABSTRACT: This paper describes the development and applications of FRAANK—
Financial Reporting and Auditing Agent with Net Knowledge. The prototype of FRAANK
presented here provides automated access to, and understanding and integration of,
rapidly changing financial information available from various sources on the Internet.
In particular, FRAANK implements intelligent parsing to extract accounting numbers
from natural-text financial statements available from the SEC EDGAR repository.
FRAANK develops an ‘‘understanding’’ of the accounting numbers by means of match-
ing the line-item labels to synonyms of tags in an XBRL taxonomy. As a result, FRAANK
converts the consolidated balance sheet, income statement, and statement of cash
flows into XBRL-tagged format. Based on FRAANK, we propose an empirical approach
toward the evaluation and improvement of XBRL taxonomies and for identifying and
justifying needs for specialized taxonomies by assessing a taxonomy fit to the historical
data, i.e., the quarterly and annual EDGAR filings. Using a test set of 10-K SEC filings,
we evaluate FRAANK’s performance by estimating its success rate in extracting and
tagging the line items using the year 2000 C&I XBRL Taxonomy, Version 1. The eval-
uation results show that FRAANK is an advanced research prototype that can be useful
in various practical applications. FRAANK also integrates the accounting numbers with
other financial information publicly available on the Internet, such as timely stock
quotes and analysts’ forecasts of earnings, and calculates important financial ratios
and other financial-analysis indicators.



20 Bovee, Kogan, Nelson, Srivastava, and Vasarhelyi

Journal of Information Systems, Spring 2005

Keywords: semantic pattern matching; SEC EDGAR; XBRL taxonomy.

I. INTRODUCTION

The accounting world has changed dramatically over recent years and the pace of
change is accelerating. Major accounting firms have increasingly been using tech-
nology to obtain labor savings. They are progressively developing large knowledge-

management services to support their professional activities. Input for such knowledge-
management services comes from many valuable data sources that are publicly available
on the Internet. The most notable one is the Securities and Exchange Commission’s EDGAR
(Electronic Data Gathering, Analysis, and Retrieval) Internet repository containing corpo-
rate filings with the SEC (http:/ /www.sec.gov/edgarhp.htm). Many Internet portals (e.g.,
Yahoo!, Quicken) provide public access to financial markets data, analysts’ forecasts, news
feeds of business relevance, etc.

Numerous professionals depend critically on timely access to financial information.
Complexity, cost, and latency of obtaining financial information in computer-understandable
format create significant friction in the system. Although the SEC filings are available from
EDGAR in a computer-readable format, they are difficult to process automatically because
of great variations in the filing structure and terminology, which impede the automatic
understanding of semantics of plain-text documents. A very promising approach to solving
this problem is based on the development and wide acceptance of XML (eXtensible Markup
Language). XBRL (eXtensible Business Reporting Language)1 is a recent XML-derivative
language aimed at enhancing and facilitating the business reporting and analysis process at
the account level. Several other XML-derivative languages (such as ebXML), proposed in
different industries or by associations, focus on the transaction level. While the development
of XBRL shows great promise, there are significant barriers to wide acceptance of XBRL,
including the costs associated with adopting XBRL and the absence of the SEC requirement
to file financial statements in XBRL. Another major impediment to widespread XBRL
adoption is the difficulty of agreeing on common taxonomy standards. Before XBRL be-
comes the accepted standard for filing financial statements, intelligent software tools must
be developed and utilized to automatically process the semi-structured natural-text financial
documents that are publicly available on the Internet. Manual extraction of accounting
numbers from the text of accounting statements available from EDGAR and manual con-
version to the XBRL standard would be too cumbersome and expensive.

The objective of this paper is to describe the development, evaluation, and applications
of FRAANK—Financial Reporting and Auditing Agent with Net Knowledge. The proto-
type of FRAANK presented here provides automated access to, and understanding and
integration of, rapidly changing financial information available from various sources on the
Internet. In particular, FRAANK implements intelligent parsing to extract and understand
accounting numbers from natural-text financial statements available from EDGAR, and
converts the consolidated balance sheet, income statement, and statement of cash flows into
XBRL-tagged format. It integrates the accounting numbers with other financial information
publicly available on the Internet, such as timely stock quotes and analysts’ forecasts of
earnings, and calculates important financial ratios and other financial analysis indicators.
FRAANK can potentially be utilized in an auditing practice, or used by investors and
creditors in decision making.

1 See http: / /www.xbrl.org.



Financial Reporting and Auditing Agent 21

Journal of Information Systems, Spring 2005

More specifically, FRAANK is focused on the task of finding important information
(e.g., accounting numbers) in semi-structured natural-text documents of accounting or au-
diting nature. The pioneering research in developing artificial-intelligence capabilities for
analyzing financial statements and understanding accounting texts (Tanaka 1982) is de-
scribed by Mui and McCarthy (1987), O’Leary and Munakata (1988), O’Leary and Eis
(1991), and O’Leary and Kandelin (1992). The most comprehensive previously reported
implementation of the intelligent parsing of financial statements in the SEC EDGAR filings
has been achieved in EdgarScan (Ferguson 1997; Steier 1995; Steier et al. 1997). A generic
tool for semantic parsing of the SEC filings has been developed by Gerdes (2003). The
predecessor of FRAANK, the so-called original EDGAR agent (Nelson et al. 2000), was
capable of retrieving quarterly filings (10-Qs) from the SEC EDGAR repository and parsing
them to identify the most important accounting numbers. As compared with the new
EDGAR subagent of FRAANK, the original EDGAR agent was much more limited in its
capabilities and had a much simpler design. The original EDGAR agent could process only
the quarterly SEC filings and identify only a few of the most important accounting numbers.
Its design was specially tuned for this limited task, and could not be scaled up to parse
financial statements comprehensively. It interacted with a single online information source
(the SEC EDGAR repository) only.

EdgarScan was created by PwC (2001) and made publicly available on the Internet in
response to the need for automatic extraction of accounting numbers from the EDGAR
filings.2 Although EdgarScan is technologically very different from the original EDGAR
agent (it uses C and Prolog instead of Perl), its architecture and design have exactly the
same limitations as those of the original EDGAR agent. EdgarScan is designed to parse a
predetermined limited set of accounting numbers, and therefore cannot be easily scaled up
to understand the meaning of the financial statement labels that correspond to the lower
levels of an XBRL taxonomy. Making EdgarScan (and other similar parsers) understand
all the line items in the financial statements would require a total redesign of the architec-
ture, similar to the effort reported in this paper, which involved transforming the original
EDGAR agent into the new version of FRAANK.

The new version of FRAANK is capable of parsing both the annual (10-K) and quar-
terly (10-Q) SEC filings and is designed to ‘‘understand’’ all the line items in the consol-
idated financial statements by matching them to the most appropriate tags in an XBRL
taxonomy. The architecture of FRAANK facilitates learning over time since it makes it
possible to improve FRAANK’s accuracy by adding synonyms to the knowledge base
whenever an exception is logged during execution. FRAANK’s use of an XBRL taxonomy
as the anchor for matching the line items makes it a natural tool for empirically evaluating
various XBRL taxonomies, identifying their deficiencies for improvement, and justifying
the need for additional industry taxonomies.3 The utilization of FRAANK as a converter
of regular SEC filings to XBRL can facilitate automation of various financial analyses that
previously had to rely on human intervention. Such uses are further enhanced by
FRAANK’s capabilities of extracting additional financial information online, such as stock
quotes and analysts’ forecasts.

2 EdgarScan is a web-based interface to the SEC EDGAR filings, which is driven by a back-end engine that
regularly retrieves EDGAR filings from the SEC servers and automatically parses them to find a subset of key
accounting numbers, normalizes them to a common format, and stores the results in its own database. (See the
homepage of EdgarScan at http: / / edgarscan.pwcglobal.com/servlets / edgarscan.)

3 While the possibility of using FRAANK to evaluate XBRL taxonomies is a ‘‘side benefit’’ of FRAANK’s
architecture, this capability will become more important as the development of various XBRL taxonomies comes
to the forefront of financial reporting.



22 Bovee, Kogan, Nelson, Srivastava, and Vasarhelyi

Journal of Information Systems, Spring 2005

This paper is organized as follows. In the next section we outline the importance and
various issues related to XBRL as the emerging business-reporting language and the need
for intelligent agents to facilitate the adoption of XBRL. Then, in Section III we define the
goals of FRAANK, and describe its function and architecture. In Section IV we give some
technical details about the implementation and intelligent parsing in FRAANK. In Section
V we evaluate the performance of FRAANK. We devote Section VI to describing various
applications of FRAANK, and Section VII to discussing some of the key future develop-
ments in the FRAANK project and concluding remarks.

II. BACKGROUND
XBRL has come a long way since the pioneering development of its predecessor

XFMRL (eXtensible Financial Reporting Markup Language) in 1999. The XBRL Consor-
tium, which includes numerous interested parties such as CPA firms, business-software
vendors, and financial-services companies, has been continuously working on developing
and improving various components of this emerging standard. The main focus of XBRL
has been on developing means for unambiguously identifying financially relevant infor-
mation. As an XML-based standard, XBRL is designed to provide a set of textual tags for
marking various parts of a document to identify accounting numbers relevant for external
financial reporting. Adding such markup makes it possible to automate the processing of
financial reports and facilitates the exchange of financial information between various com-
puter systems.

To accommodate significantly diverging financial reporting practices among different
countries and various industries, XBRL uses a two-tiered design consisting of the XBRL
specification and XBRL taxonomies. The XBRL specification provides a set of generic tags
for expressing various facts and, as such, the XBRL specification is not tied to any particular
set of accounting standards or practices, or even to accounting in general. To provide
concrete tags for marking an actual financial report, the XBRL specification has to be
complemented with an XBRL taxonomy. It is an XBRL taxonomy that defines the markup
of various accounting concepts as well as the hierarchical and numerical relationships
among these concepts. Therefore, while a single XBRL specification suffices, numerous
taxonomies must be developed to accommodate the needs of different countries and/or
industries.

Developing XBRL taxonomies is a difficult, laborious, and controversial process. A
typical taxonomy has to define markup for several hundred concepts, and it has to be done
in accordance with generally accepted accounting standards and practices. The standards
are usually not formal enough and the practices are not uniform enough to allow for an
unambiguous translation of them into taxonomies. On the one hand, it is important to
develop a sufficient number of taxonomies to accommodate the true needs of all the con-
stituents. On the other hand, it is important to avoid the proliferation of different taxonomies
to the extent possible, since the use of different taxonomies impedes the comparability of
financial reports. It is therefore important to develop a methodology for evaluating proposed
XBRL taxonomies, developing ways of improving them, and identifying and justifying
needs for additional taxonomies.

An empirical approach toward the evaluation and improvement of XBRL taxonomies
is to assess a taxonomy fit to the historical data, i.e., the quarterly and annual filings with
the SEC that are available from the EDGAR repository. The FRAANK agent can be used
to automate the evaluation and improvement of an XBRL taxonomy, which is utilized in
FRAANK as the anchor in intelligent parsing of the natural text of financial statements.
Most importantly, FRAANK facilitates the adoption of XBRL by providing the automatic



Financial Reporting and Auditing Agent 23

Journal of Information Systems, Spring 2005

conversion of financial statements to this emerging standard. Thus, FRAANK demonstrates
the crucial importance of the intelligent-agent technology for the successful development
and adoption of XBRL.

While software agents have been the focus of much attention both in popular press and
in the research community, there is no commonly accepted definition of an agent.4 Past
experience with various artificial-intelligence applications has shown that to be successful
in practice an application usually has to follow the ‘‘weak-AI’’ paradigm, i.e., to simulate
intelligent behavior, and be sufficiently focused on a limited set of tasks.5 This is the
approach taken in FRAANK. The main subagent of FRAANK—EDGAR—faces a difficult
task of understanding very loosely formatted financial statements in the SEC filings, and
therefore utilizes a tremendous amount of code to achieve performance worthy of the weak-
AI qualification. On the other hand, the ticker subagent’s task is much simpler: to choose
the most likely ticker symbol for a given string representing a company name. While,
strictly speaking, this task is ill-defined, the performance of the ticker subagent is often
comparable to that of a human being given the same task, and therefore quite useful even
though it implements only a few simple heuristic rules (see the next section), and is an
extreme example of the weak-AI approach.

III. ARCHITECTURE OF FRAANK
The current version of the FRAANK is capable of:

� analyzing semi-structured natural text in the financial domain,
� formally representing and using accounting knowledge, and
� interacting with a variety of online information sources.

The FRAANK prototype6 can be viewed as the first step in gathering financial data on
companies that are available on the Internet and using these data to provide value-added
service. Once the agent retrieves financial information, these data can be processed and
combined with other artificial-intelligence systems to provide knowledge for enhanced de-
cision making in real time.

FRAANK communicates with its users over the World Wide Web through a simple
interface. The user who is interested in a certain publicly traded company submits that
company’s name to the agent, and then FRAANK automatically:

� searches the SEC EDGAR database for the filings (10-Q and 10-K) by that company,
intelligently parses, and tags using the U.S. C&I XBRL taxonomy (Spec. 2) the
filing selected by the user,

� queries the Yahoo! ticker-search engine to identify the ticker of the company,
� uses the ticker to retrieve the most recent stock price from Quote.com,
� contacts Quicken.com to find the most current consensus forecast of earnings per

share (EPS) provided by Zacks, and

4 For an extensive discussion of what constitutes an agent, see Franklin and Graesser (1997).
5 There is an ongoing debate in the AI literature between the proponents of the so-called ‘‘strong AI’’ versus

‘‘weak AI’’ (see, e.g., Searle 1984). The strong-AI proponents claim that a ‘‘true’’ AI program has to be a
universal model of a human-thinking process. The proponents of weak AI argue that it is more important and
productive to concentrate on designing programs that only simulate intelligent behavior, i.e., produce results
similar to what a human thinker would have done. While the weak-AI approach emphasizes that seemingly
intelligent behavior may result from a seemingly trivial code, in most cases achieving useful results requires
implementing very complex logic.

6 The prototypes of the FRAANK agent that process the 10-Q and 10-K filings, respectively, can be found at:
http: / / fraank.eycarat.ku.edu /cgi-bin /vml /working /FRAANK/ login.htm.



24 Bovee, Kogan, Nelson, Srivastava, and Vasarhelyi

Journal of Information Systems, Spring 2005

FIGURE 1
The Architecture of FRAANK

Knowledge 
Base/Database User 

User 

User 

User 

Agent’s Logic 
Ticker Edgar Stock EPS 

Web 
Server 

Yahoo SEC EDGAR Quote.com Quicken/Zack
 

External Environment 

Internal Environment 

� utilizes the obtained results to calculate various accounting ratios, and the Z-score
(a discriminant measure of bankruptcy risk) (Altman 1968, 1983).

The multifaceted nature of FRAANK is reflected in its design. FRAANK consists of
several subagents, corresponding to the Internet information sources that FRAANK utilizes
in real time. These subagents are the EDGAR agent, the ticker agent, the stock-quote agent,
and the EPS agent. The architecture of FRAANK, as shown in Figure 1, allows the agent’s
logic to be clearly separated from the end-user interface on the one hand, and from the
accounting knowledge source stored in a relational database on the other hand. Currently,
the knowledge source in the database contains synonyms of accounting terms.

EDGAR Subagent
EDGAR is the main subagent of FRAANK, since it is responsible for obtaining and

processing the richest source of information: SECfilings of publicly traded companies
available in the SEC EDGAR repository on the Web. The predecessor of the EDGAR
subagent, the original EDGAR agent, was described in detail in Nelson et al. (2000). The
current version of the EDGAR subagent is completely redesigned, significantly more robust,
and has much greater capabilities, which include:

� retrieving the company’s recent SECfilings,
� finding and extracting from them consolidatedfinancial statements,
� parsing the statements to identify all the line items, their balances, and their aggre-

gation structure,
� matching the labels of the identified line items with the corresponding XBRL tags

and tagging them, and
� identifying line items for which no XBRL tag in the taxonomy exists.

This subagent searches the SEC EDGAR repository for reports (10-Q and 10-K) of
publicly traded companies that match the user-specified names and returns a list of available
filings. Thesefilings are sorted by date, with the most recent ones listedfirst. The user is
prompted to choose afiling, which is then retrieved and analyzed. Since the EDGAR
subagent always contacts the SEC EDGAR database in real time over the Internet, it always



Financial Reporting and Auditing Agent 25

Journal of Information Systems, Spring 2005

provides access to the most recentfilings. While this retrieval function is based on standard
Internet technology, the other two functions of EDGAR have to do with extremely difficult
and highly nonstandard problems of analyzing natural text.

The current version of FRAANKfinds in the retrieved 10-Q and 10-Kfilings the
consolidated balance sheet, income statement, and statement of cashflows. Although a
human accountant can easily locate afinancial statement in the body of a 10-Kfiling, the
same task is a challenge for a computer program because of the great variability in the
structure of thefilings and the language used. The location of the statements in the body
of the filing varies significantly. While the SEC EDGARfilings are required to have some
generic SGML tags such as the table and column tags, evidently there is no effective
validation procedure in place to enforce compliance with these requirements, and the re-
quired tags can be missing or misplaced. While each statement is delimited with the table
tags, there are usually many different tables in the body of thefiling. Moreover, the caption
can be both before and after the table tag, and the wording of the caption varies greatly.
For example, the income statement can also be called the statement of income, the statement
of changes infinancial position, the profit and loss statement, or the statement of revenues
and expenses, etc. Complicating the automatic location of statements even further is the
possibility of having the same keywords in the caption of some other tables in the body of
the filing (e.g., due to the segment reporting requirements).

After a particularfinancial statement is extracted, it is parsed by the EDGAR subagent
to identify all the line items, their balances, and their aggregation structure. Line-item names
can exhibit even greater variability than the table captions, as described in detail in Nelson
et al. (2000). The intelligent parsing procedure in EDGAR utilizes tables of line-item syn-
onyms stored in a relational database (see Section IV for a more detailed description). It
used to be possible to cross-validate certain line items with the SGML-tagged values pre-
sented in the Financial Data Schedule (FDS) appended to the 10-K and 10-Qfilings. Un-
fortunately, the SEC abandoned the requirement to append the FDS as of early 2001, thus
making this cross-validation impossible for newerfilings. Therefore, for recentfilings, only
the aggregation structure (totals, subtotals, etc.) of the line numbers is used to improve the
accuracy of parsing.

Once the agent has parsed the SECfilings and identified the line items and the corre-
sponding values for the desired period, it matches the identified labels to the corresponding
XBRL tags and then tags the line items accordingly. The current version of the agent uses
the 2000 U.S. C&I XBRL Taxonomy, Version 1 (see XBRL 2000). Whenever there are no
matching XBRL tags, the agent uses generic tags for those line items.7 As discussed later,
this feature of the agent will be utilized in testing, validating, and improving the US C&I
XBRL taxonomies.

Ticker Subagent
After the user selects a 10-K or 10-Qfiling for analyses, FRAANK uses its ticker

subagent to identify the ticker symbol of the company, which is needed for obtaining the
stock quotes and EPS forecasts. There are a number of ticker-search engines publicly avail-
able on the Internet. The ticker agent sends the company name to the Yahoo! ticker engine,
and retrieves a list of tickers matching the submitted name. The retrieved ticker list must

7 For example, the balance sheet of Compaq in its 2001 10-Kfiling has a line item labeled‘‘Leases and other
accounts receivable.’’ Since the XBRL taxonomy does not have an appropriate tag, the agent tags this item with
a generic tag‘‘KU:unknown’’ and labels it with the correct description.



26 Bovee, Kogan, Nelson, Srivastava, and Vasarhelyi

Journal of Information Systems, Spring 2005

then be analyzed to determine the most probable candidate, since this list will usually
contain quite a few tickers. The ticker subagent utilizes several heuristic rules for identifying
the best match, applying them in the following order:

� Since most probable matches should include user input as separate words in company
names, items not containing all the exact words (e.g., containing super-words, i.e.,
words that contain the input words as proper substrings) are eliminated.

� Since most probable ticker symbols are short, the list is ordered by ticker-symbol
length.

� Since most probable company names are short, items corresponding to the shortest
tickers are ordered by the total length of the company name, and thefirst one is
chosen as the best match. (Any tie is broken arbitrarily at this stage.)

Although these rules are quite simple, and thus the ticker subagent intelligence is
rudimentary, very often the resulting best match is exactly the right ticker. This subagent
illustrates the practicality of simple heuristics: certain seemingly complicated tasks can be
accomplished by using quite simple means. Unfortunately, as the example of the EDGAR
subagent shows, this is not always the case (see Section IV for a description of our intel-
ligent parsing technology).

Stock Quotes and EPS Subagents
The stock-quote subagent uses the ticker symbol identified by the ticker subagent to

send the symbol to a public-stock-quote engine (mach.quote.com), and extracts from the
response the most recent share price. On its Quicken website, Intuit provides free access
to Zacks Investment Research data of earnings-per-share (EPS) forecasts. The EPS subagent
uses the most probable ticker to retrieve the (diluted) EPS forecast for the next quarter
from Quicken.com.

Integration and Analysis
FRAANK integrates the subagents’ responses (price from the stock-quote subagent,

earnings from EDGAR, and analyst forecasts) to compute historical and estimated important
financial ratios showing this company’s investment potential (like the price/earnings ratio),
and to calculate a number of otherfinancial ratios (e.g., quick ratio, current ratio). Examples
of summarizing and integrating the information obtained by the subagents are detailed in
Section VI.

IV. DESIGN, IMPLEMENTATION AND INTELLIGENT PARSING IN FRAANK
Since the most difficult task of FRAANK is the intelligent analysis of natural-text

documents (i.e., 10-K and 10-Qfilings), FRAANK needs a very strong pattern-matching
capability. Therefore, the programming logic of FRAANK is implemented entirely in Perl
(Wall et al. 1996) since, arguably, Perl provides one of the strongest pattern-matching
functionalities. By far the largest part of FRAANK’s code is devoted to the implementation
of intelligent parsing of semi-structured natural text of the SECfilings.

Since FRAANK interacts with both its users and its external information sources over
the Internet, the choice of Perl provides the benefits of very strong networking support.
When FRAANK communicates with external information sources over the Internet (e.g.,
SEC, Yahoo!, Quicken, etc.), FRAANK essentially acts as a specialized web client. The
web client functionality of FRAANK is implemented using the high-level libwww-perl



Financial Reporting and Auditing Agent 27

Journal of Information Systems, Spring 2005

library (2001), once called LWP (see also Wong 1997), which allows much simpler imple-
mentation of more sophisticated web client functionality in the current version of FRAANK
(as compared with the original EDGAR agent, see Nelson et al. 2000).

End-users also interact with FRAANK using HTTP. In this case, however, the user’s
web client contacts FRAANK’s web server, which launches FRAANK using Common
Gateway Interface (CGI). FRAANK relies on the CGI.pm module developed by Stein
(1999), which uses objects to create webfill-out forms on thefly and to parse their contents.
When executed by the HTTP server, the agent receives the user’s input as CGI URL-
encoded variables using the CGI.pm param() method.

The EDGAR subagent of FRAANK has grown and transformed greatly since the orig-
inal implementation (described in Nelson et al. [2000]). It has been redesigned and mod-
ularized, and now includes almost two dozen subroutines and about 5,000 lines of code.
The major subroutines are designed for:

� extracting the consolidated balance sheet, income statement, and statement of cash
flows;

� partitioning each statement into line items, identifying headings, and merging mul-
tiple lines corresponding to the same line item;

� splitting each line item into the label and values and identifying the column of values
corresponding to the current period (as opposed to the previous ones);

� determining the aggregation structure of the values to identify totals among the line
items;

� matching the labels to the synonyms of tags in an XBRL taxonomy and selecting
the most appropriate XBRL tag for each line item; and

� matching the headings to the identified totals, and selecting the most appropriate
XBRL tags for the totals with empty labels.

Note that thefirst three tasks in the above list become much easier if thefilings are
presented in HTML (as opposed to plain text with a few SGML tags). Therefore, the
subagent determines whether thefiling is EDGAR or is not in HTML, and chooses
the parsing procedures accordingly. The parsing procedures in the EDGAR subagent are
heuristic algorithms that simulate the results of information processing by an intelligent
reader of the SECfilings. To achieve a high level of accuracy requires implementing a
tremendous amount of parsing logic in the code of the EDGAR subagent. For example, the
extraction of tables of the three consolidatedfinancial statements is based not only on
locating the table tags and recognizing the captions corresponding to the synonyms of the
statement titles stored in the knowledge base, but also on verifying that the beginning of
the analyzed table corresponds to the expected structure. In the case of the balance sheet,
the table is expected to start with assets, more precisely the most liquid assets (cash and
cash equivalents). The income statement is expected to start with revenues or sales, while
the statement of cashflows is expected to start with net income (for the statements prepared
using the indirect method) or cashflows from operations. Additional logic is implemented
to identify the end of the statement, which can be split into several parts (e.g., when it does
not fit on a single page).

A special challenge in parsing thefinancial statements is the presence of headings and
totals. Headings will usually have just the label and no values, while totals will often have
just a trivial label (e.g.,‘‘total’’) and meaningful values. A heading may or may not have
a corresponding total below in the statement, while a total may or may not have a corre-
sponding heading above in the statement. The identification of totals cannot be based only



28 Bovee, Kogan, Nelson, Srivastava, and Vasarhelyi

Journal of Information Systems, Spring 2005

on matching keywords (such as‘‘total’’) and on locating (double) underlining since both
can be missing. Therefore, the procedure for identifying the totals without meaningful labels
is based on identifying the aggregation structure of the accounting numbers in the statement,
under the assumption that spurious equalities are highly unlikely. Thetotals procedure is
recursive. It starts from the top of the statement, adds up the values of contiguous segments
of line items, and checks whether the sum equals the value of the following line item. If
yes, then the following line item is identified as a total and only this item is used instead
of the corresponding segment for further identification of the nested totals. The procedure
has to restart after each total is identified. Note that the maximum number of contiguous
segments is only quadratic in the number of line items in the statement, and therefore the
procedure is not very expensive computationally.

The totals procedure also incorporates special logic for identifying negative values,
which is quite challenging since manyfilings do not follow the standard accounting con-
vention of displaying negative values in parentheses, nor do they include any keywords
(such as‘‘less’’) that indicate negative values. Therefore, the procedure attempts toflip the
sign of some values in the segment while calculating the total. Note that it would be
prohibitively expensive computationally to attemptflipping the sign of every conceivable
subset of values in the segment, and one can argue that in general it is computationally
intractable to identify an arbitrary subset of negative values.8 Therefore, it is assumed that
the subset of the negative values will form a contiguous subsegment at the end of the
considered segment (just before the total), and the procedure attempts to consider all such
subsegments, which is computationally inexpensive since the number of such subsegments
is at mostn � 1, wheren is the number of values in the segment.

To ‘‘understand the meaning’’ of the line items, the EDGAR subagent has to map every
line item (if possible) to a tag in an XBRL taxonomy. As illustrated in Figure 2, the EDGAR
subagent utilizes a knowledge source of accounting synonyms, stored in a relational data-
base, to cope with the variation encountered in corporate use of terminology and subse-
quently identify and parse the appropriate substitute terms. The knowledge source is based
on an XBRL taxonomy, with each taxonomy tag mapped to (possibly many) synonyms
encountered in previously analyzed SECfilings. The connection to the database is estab-
lished over ODBC, and the queries are implemented in standard SQL.

In the current implementation of the EDGAR subagent, a unified parsing subroutine is
developed that parses all the line items in exactly the same way. The 552 elements of the
C&I XBRL taxonomy, for the balance sheet, income statement, and statement of cashflows
(see Table 1), are used as the key items in a growing database of (currently) approximately
3,200 synonyms. This development is likely to ultimately both improve the accuracy of
FRAANK’s parsing and to identify possible deficiencies in, or necessary extensions to, the
XBRL taxonomy. Indeed, the agent keeps track of the exceptions whenever the parsing
subroutine fails, which can happen for two different principal reasons. Thefirst one happens
when no synonym in the database matches the line-item description. After human review
of the exceptions log, this synonym will be added to the database with its paired corre-
sponding key, thus eliminating this instance of failure in the future. The second reason for
a parsing failure is the absence of the corresponding key item in the database of synonyms,

8 Such problems are known as‘‘NP-hard’’ in the theory of computational complexity (see, e.g., Garey and Johnson
1979).



Financial Reporting and Auditing Agent 29

Journal of Information Systems, Spring 2005

FIGURE 2
Synonym Matching in FRAANK

Agent Parses 
a Statement & 

Retrieves Synonyms 
XBRL Tags & 

Synonyms 
Database 

Agent Checks Labels vs. 
Synonyms for Match 

Agent Resolves 
Ambiguities and Assigns 

XBRL Tags 




























