RUTGERS 250

Auditing, the Technological Revolution, and Public Good

Miklos A. Vasarhelyi
KPMG Distinguished Professor of AIS
Rutgers Business School
June 30, 2017
PIOB, MADRID

THE STORY

The world is rapidly changing, technology enables a 365/24/7 economy

How has the audit profession evolved? Some major transformations...

Robot arm is developed for assembly lines	First virtual reality glasses and gloves	Deep Blue defeats chess player	Smart Phone is developed	Driveless cars	Society
1970s	1980s	1990s	2000s	2010s	
Sampling is introduced	IT audit becomes common	Move to Risk-based approach	Disclose audit fees	Adopts KAM	Audit

Rutgers Business School

Source: PwC 2017 and Matthews 2006

DILEMMAS

- 1. Technology is moving much faster than its adoption in the assurance arena
- 2. If analytic methodologies find a material error how do you deal with prior periods?
- 3. What happens if in full population testing you find many thousands of exceptions?
- 4. If you are monitoring transactions and assuring before they go downstream is that substantive testing or control testing?
- 5. If analytic methodologies are not covered in the CPA exam how can the students be interested?

Public Good

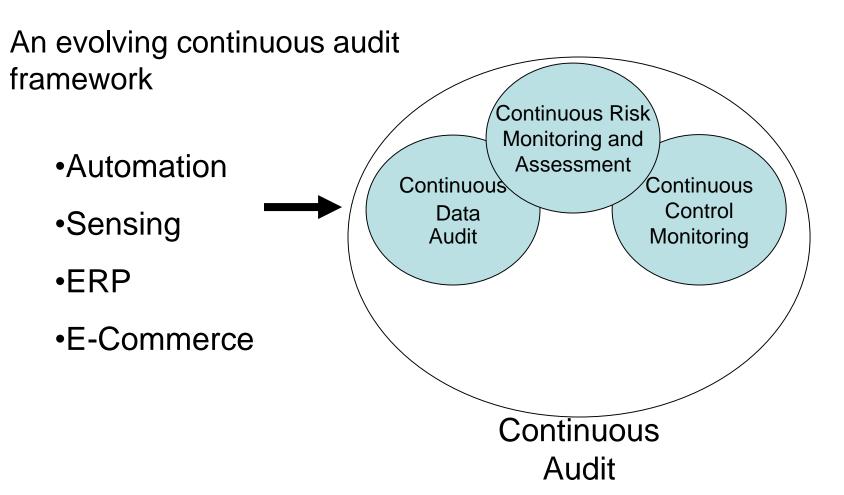
- 1) Adopt the audit data standard to create an easy interconnectivity of audit technology
- 2) Create an experimentation period of dual or multiple audit standards
- Reengineer and re-imagine the structures of accounting and audit education
- 4) Collaborate among the monitoring and standard setters to accelerate and improve accounting and audit standards

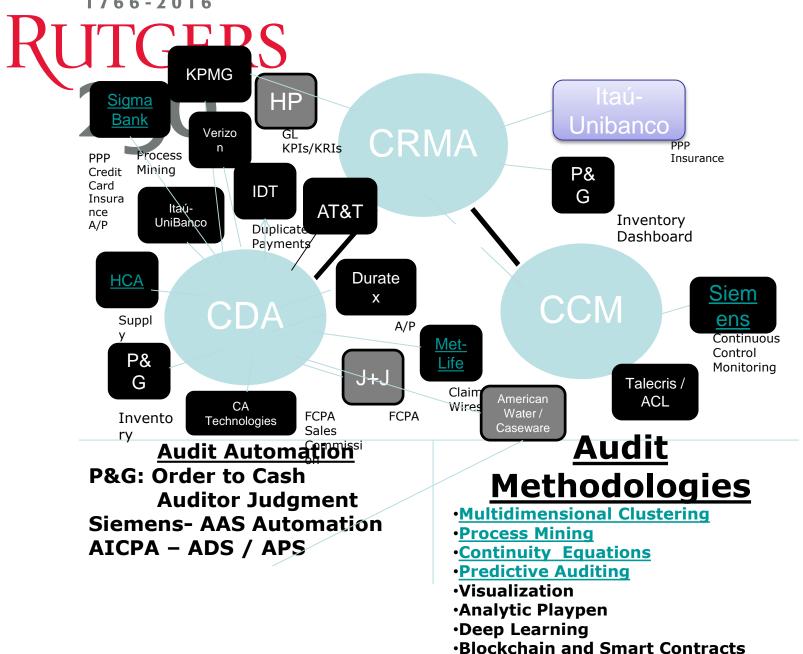
Outline The Continuous Audit and Reporting Lab Big Data and Analytics

- Analytics the RADAR Project
- A Cognitive Assistant
- Deep Learning in Assurance
- Smart contracts using blockchain
- Exogenous Process Assurance

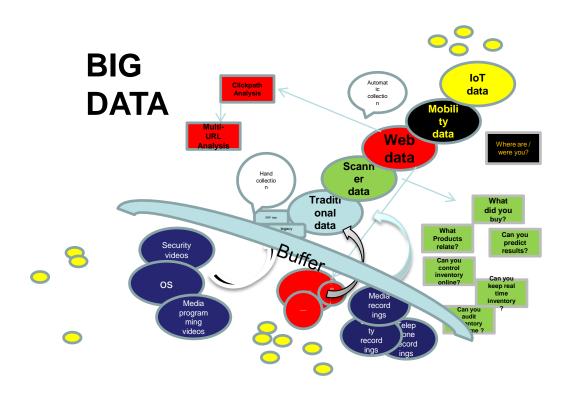
Imagineering Audit 4.0

Issues and what can be done now


The CarLab


Continuous Audit and Reporting Laboratory

- -Graduate School of Management
- -Rutgers University


Rutgers Business School

Cognitive decision assistant

BIG DATA

3 Vs: Volume, Variety & Velocity

ANALYTICS

Data Analytics Illustration: Revenue Three-Way Match

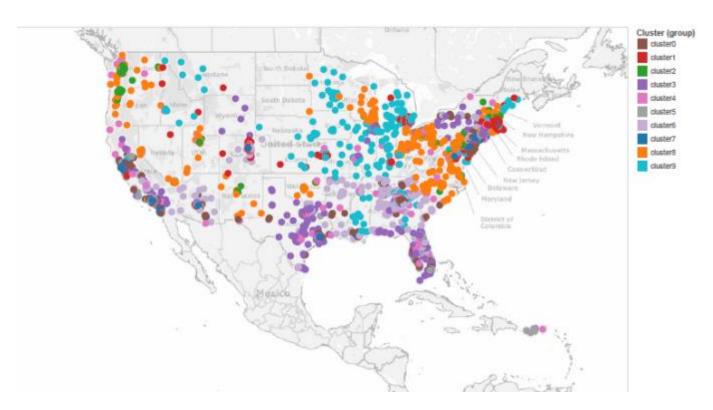
Entity ABC has revenue of €125 million generated by 725,000 transactions. The three way match procedure is executed with the following results:

	Amount (€)	%	Number of Transactions	%
No differences	119,750,000	95.8	691,000	95.3
Outliers:				
Quantity differences	3,125,000	2.5	16,700	2.3
Pricing differences	2,125,000	1.7	17,300	2.4

Note: Materiality for the audit of the financial statements as a whole is €1,000,000.

Data Analytics

Illustration 2- Predictive Analytic (cont.)


Data and Model Description

- Objective: Predict revenue at the store level (approximately 2,000 stores) for a publicly held retail company using internal company data and non-traditional data (e.g., weather).
- Forecasting daily store level sales (one step ahead forecasting).
- Multivariate regression model with / without the peer store indicator and weather indicators.
- AR(1)+...+AR(7) with / without the peer store indicator and weather indicators.

Data Analytics

Illustration 2 – Predictive Analytic (cont.)

Clustering Using Store Sales by Peer Group

Data Analytics

Illustration 3 – Clustering


Multidimensional clustering is a powerful tool to detect groups of similar events and identify outliers – Audit Sampling (AS 2315)

Can be used in most set of data examination procedures (preferably with a reduced set of data).

Looking for anomalous clusters and outliers from the clusters - Statistically complex.

Multidimensional Clustering for audit fault detection in an insurance and credit card settings and super-app Sutapat Thiprungsri, Miklos A. Vasarhelyi, and Paul Byrnes

Data Analytics Illustration 3 – Clustering (cont.)

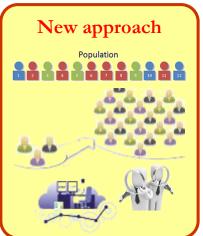
Rutgers AICPA Data Analytics Research Initiative

RADAR

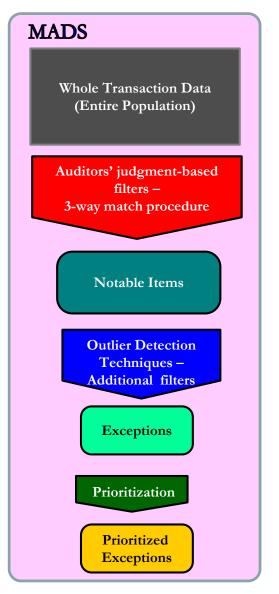
The RADAR project

Rutgers, AICPA, CPA Canada, and 8 largest firms

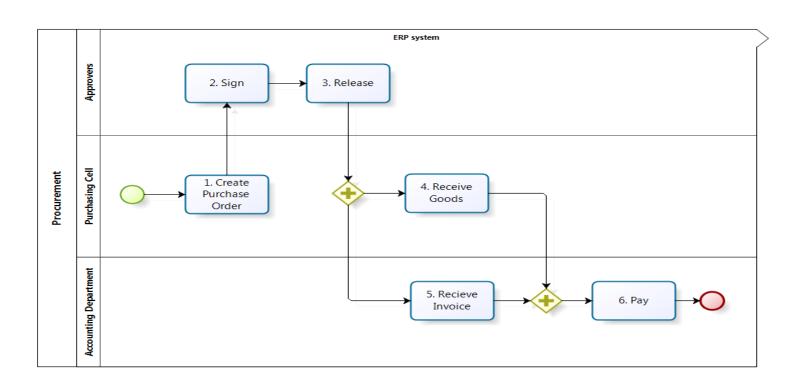
Started officially in June 2016


- 3 projects currently
 - Exceptional Exceptions (MADS)
 - Process Mining
 - Visualization as Audit Evidence

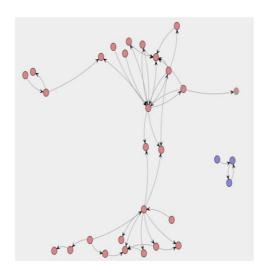
Multidimensional Audit Data Selection (MADS)



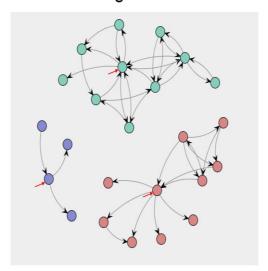
Advance in data processing ability & data analytic techniques allows auditors to evaluate the entire population instead of examining just a chosen sample.


- BUT, often generate large numbers of outliers.
- Impractical for auditors to investigate entire outliers

 Crucial to develop a method that can help auditors effectively deal with large amounts of data, but also assist them to efficiently handle a massive number of outliers.


Rutger

Analytics for Internal Control Evaluation through **Process Mining**



Analytics for Internal Control Evaluation through **Process Mining**

Social Network of the 742 Cases Without *Sign* and in Violation of SOD Controls

Social Network of 175 cases by three individuals violating SOD

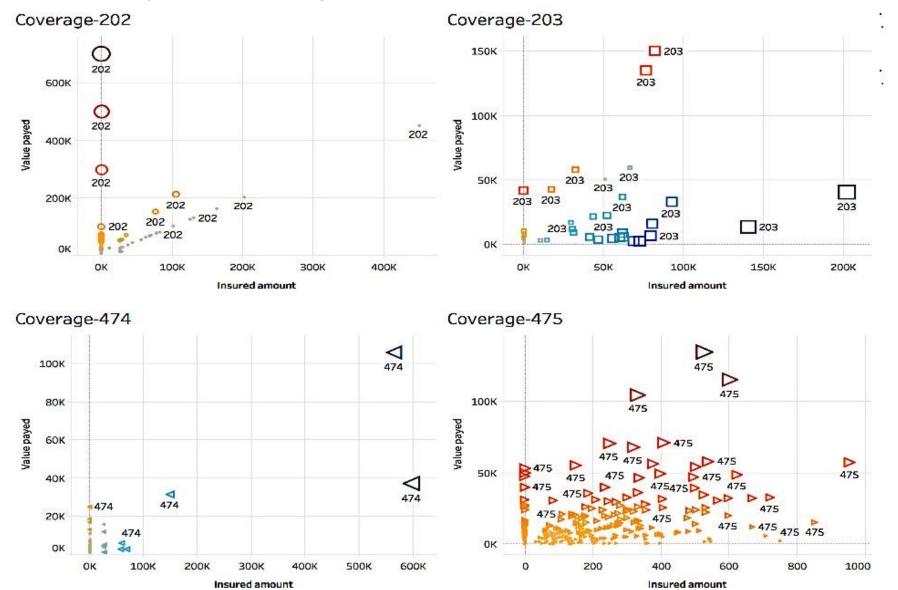
Visualization in Audit Process

- Understand client's business and industry
- Assess client business risk
- Perform preliminary analytical procedures
- Perform Subsequent events review
- Issue audit report
- Assess engagement quality

Assessment

Risk

Develop Audit Plan

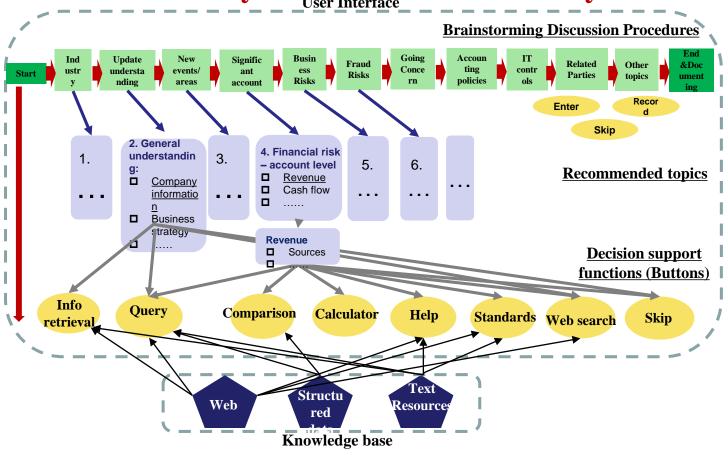

- Understand internal control and assess control risk
- Assess fraud risks

Review and Reporting

Obtain Audit Evidence

- Substantive tests of transactions
- Perform analytical procedures
- Test of details of balances

Dashboard: investigate the relationship between insured amount and actual payment amount by different coverage codes for the individual claims

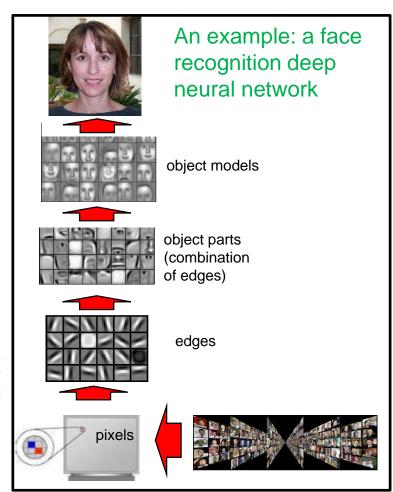

RUTGERS 250

Developing an intelligent cognitive assistant for brainstorming meeting in audit planning and risk assessment

Qiao Li Miklos Vasarhelyi 2017/5/2

Proposed Framework for the Intelligent System

- A directive system based on VPA analysis


Ting Sun And Miklos A. Vasarhelyi

DEEP LEARNING IN AUDITING

Background: Deep learning

Deep learning employs deep neural networks to simulate how the brain learns.

Deep neural network input layer hidden layer 1 hidden layer 2 hidden layer 3 output layer

Dissertation Essays

Research 1. The incremental informativeness of management sentiment for internal control material weakness prediction:

An application of deep learning to textual analysis for conference calls

Research 2. The performance of sentiment feature of 10-K MD&As for financial misstatements prediction:

A comparison of deep learning and bag of words approach

Research 3. Do Social Media Messages Provide Clues for Audit Planning?

- An Application of Deep Learning Based Textual Analysis of Tweets to Audit Fee Prediction

Jamie Frieman and Miklos A Vasarhelyi

SMART CONTRACTS USING BLOCKCHAIN

Proposed Environment

Transactio n/event occurs

Received by blockchain system and relevant smart contracts are activated.

Relevant information for analysis located

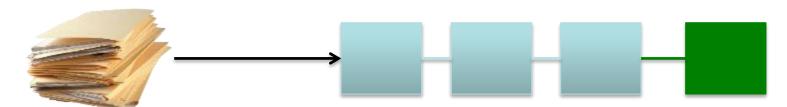
Transaction

Rejected

Transaction
Accepted

Parties
Rutgers Business School
Notified

Parties Notified (if applicable)


Entry
Posted(if
applicable)
Loaded to block

Relevant

requirements

are retrieved

Proposed Environment cont.

Validated transactions/events are compiled to form a block

The new block is time stamped and added to the existing chain

Auditors
Rutgers Business School

Management

Shareholders

Armchair Auditors

Can a system (data) be audited without going directly into the client data?

ASSURANCE WITH EXOGENOUS (BIG) DATA

Can there be auditing without getting data directly from the client?

Of course assertions by management are needed (to be verified)

Big data provides a plethora of information progressively more and more relevant

Moon (2016) showed that social media can indicate variances in revenue streams (his CRMA dissertation)

Revenues show high correlation with items such as advertising, social media utterances, supply chain flows, transactions in electronic purchases, IoT measures, etc.

Costs can be associated to online prices, third party orders, process discontinuities, etc.

Most models until more research is performed are ad hoc

Can there be auditing without getting data directly from the client? (cont)

The level of probable error on these measurements is clearly larger but much less susceptible to tampering

Easier (likely) to create a continuous reporting system that can serve for assurance

Standards would have to radically change IS THIS AUDITING?

Exogenous Evidence Integration

What data will be considered evidence?

Measurements	Measurement variables	Assurance of	Quality compared with traditional
Facebook/twitter/news mentions	Name mentions Positive / negatives Sentiment Text meaning	Risk faced Product popularity Sales level	Different
Calls / mails to customer services	Classification of type and outcome by agent	Reserve for product replacement Bad debt estimates	Different
nternet of Things (IoT) ecords of equipment usage Sensor data (e.g. weather data)		External Verification	Better
Face recognition of clients	Metadata of videos and pictures: time, location, identity of the person	Fraud	Less accurate but exogenous so it is not intrusive
Video footage Number of cars in parking lots		Estimates of sales revenue	Less accurate, but more difficult (costlier) to falsify
Geo-locational data	GPS coordinates Zip codes	Efficiency Fraud (collision) FCPA (kickbacks)	Accurate

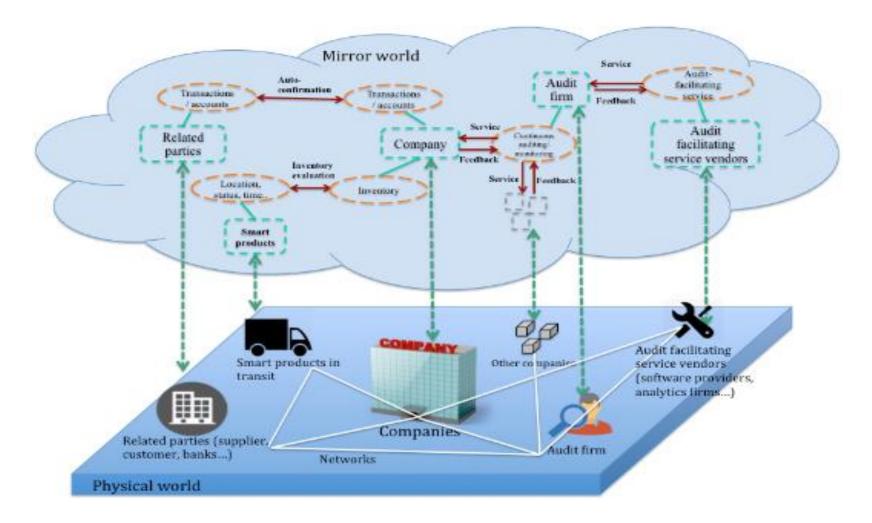
AUTOMATING THE AUDIT

Audit Production Line

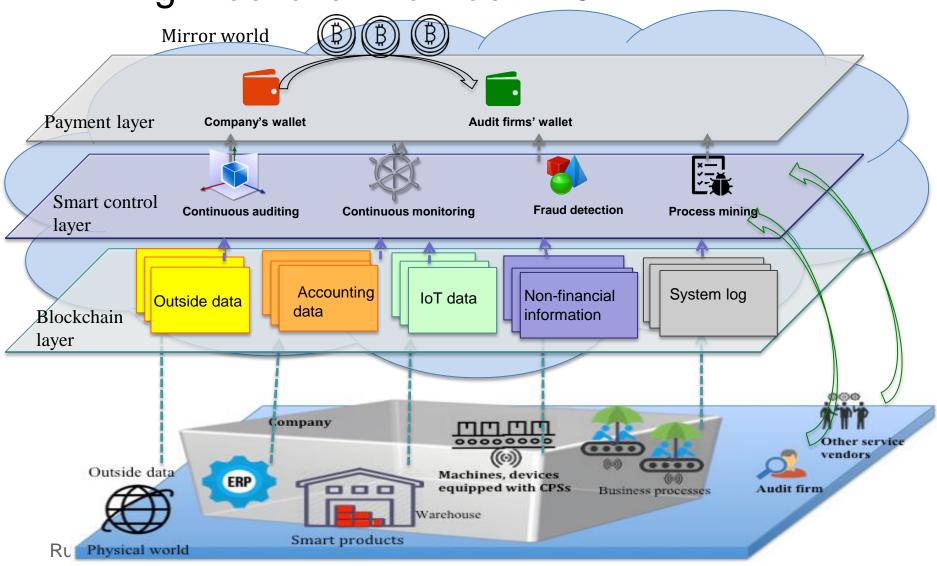
Phase	AI-Enabled Automated Audit Process	Traditional Audit Process
Pre-planning	-AI collects and analyzes Big Data (exogenous)	-Auditors examines client's industry
	-Data related to the client's organizational structure,	-Auditor examines client's organizational
	operational methods, and accounting and financial	structure, operational methods, and
	systems feed into AI system	accounting and financial systems
Contracting	-AI uses the estimate of the risk level (from phase 1) and	-Engagement Letter prepared by the
	calculates audit fees, number of hours	auditor based on the estimated Client risk
	-AI analyzes a database of contracts & prepares contract	-Auditor and client sign contract
	-Auditor and Client sign contract	
Understanding	-Feed flowcharts, questionnaire answers, narratives, into	-Document understanding (flowcharts,
Internal	AI and use image recognition and text mining to analyze	questionnaires, narratives, walkthrough)
Controls and	them	-Auditor aggregates this information and
Identifying Risk	-Use Drones to conduct the walkthrough, then use AI to	uses their judgment to identify risks
Factors	analyze the generated video	factors
	-Use visualization and pattern recognition to identify Risk	-Understanding of IC to determine the
	factors	scope, nature, and timing of substantive
	-AI aggregates all this data to Identify Fraud and illegal	tests.
	acts risk factors	
Control Risk	-Continuous Control Monitoring Systems examine	-Examination of the client's IC policies
Assessment	controls continuously	and procedures
	-AI runs Process mining to verify proper IC	-Risk assessment for each attribute
	implementation	-Test of controls
	-Logs are automatically generated to ensure their	-Reassess risk
Rutgers Bu sintegrify chool		-Document testing of controls. 41

Audit Production Line (Continued)

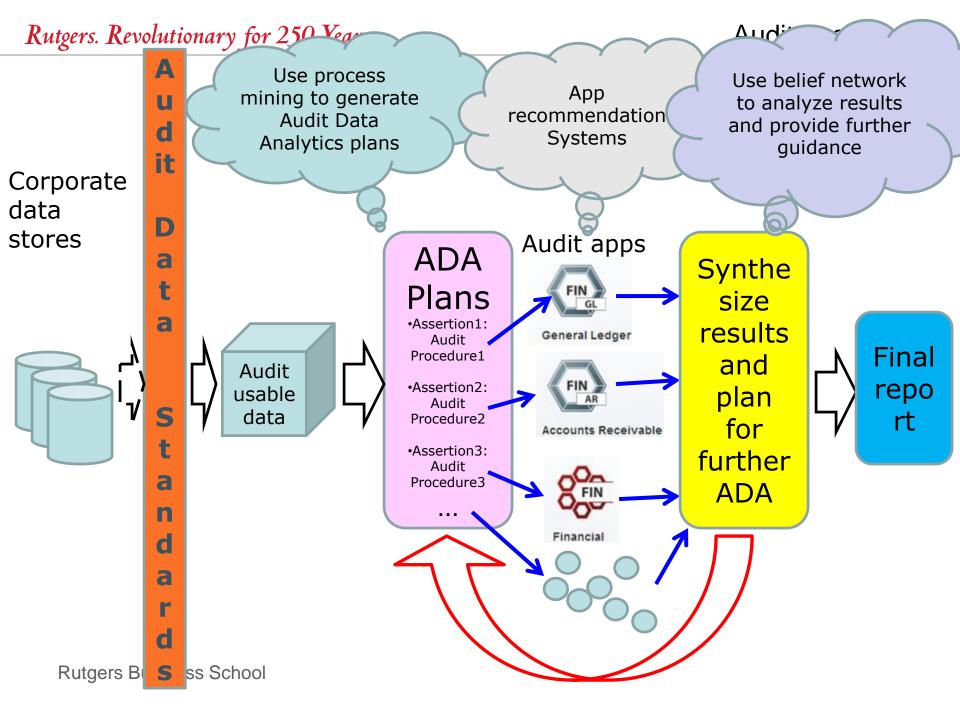
Phase	AI-Enabled Automated Audit Process	Traditional Audit Process
Substantive tests	-Continuous Data Quality Assurance	-Periodical Sampling-based tests, and
	to ensure quality of data and	nature, extent, and timing depend on IC
	evidence	tests
	-Al examines data provenance	-Tests of details of a sample of
	-Continuous test of details of	transactions
	transactions on 100% of the	-Test of details of balances (at a certain
	population	point in time)
	-Continuous test of details of	-Analytical procedures
	balances (at all times)	
	-Continuous pattern recognition,	
	outlier detection, benchmarks,	
	visualization	
Evaluation of	-This becomes part of the previous	-Auditor must evaluate the sufficiency,
Evidence	phase	clarity, and acceptability of collected
		evidence. Accordingly, the auditor may
		either collect more evidence, or
		withdraw from engagement.
Audit Report	-Al uses a predictive model to	-Auditor aggregates previous
	estimate the various risks identified	information to issue a report
	-Audit report can be continuous	-Report is categorical: Clean, qualified,
	(graded 1-00 for example) rather than	adverse, etc.
	categorical (clean, qualified, adverse,	
	etc.)	


The Thinking that must go into change

IMAGINEERING THE FUTURE AUDIT


ASSURING INVENTORY and other things

Basic Structure and Functions of Audit 4.0



Linking Blockchain to Audit 4.0

ISSUES AND WHAT CAN BE DONE NOW

AUDIT DATA STANDARD

AN EXPERIMENTATION PROGRAM

An experimentation program for New GAAS

Objective:

To substantially accelerate the inclusion of modern analytic and monitoring methods and explore new forms of audit evidence.

Execution:

- Agreement between the audit client, the audit firm, the standard-setter, and an academic institution (e.g. Rutgers University):
- A safe harbor provision indicating the relaxation of existing audit standards (i.e. PCAOB, IAASB) on participating audit engagements.
- Agreed upon procedures that will act as substitutes to traditional audit procedures.
- The client IT team would provide access to presumably large amounts of system generated data (i.e. more data than in traditional engagements); the client's IA team would participate in the program.
- Specification of the audit area and engagement that will be targeted for examination.
- The audit for the selected business process can be examined from its initial (i.e. planning) to concluding audit phase (audit wrap-up).

EDUCATION

What should auditors know in Analytics

- We need our staff to be aware of the tools and techniques that are available to them to address audit risks.
- We need our professionals to be able to identify risks (frame out their questions) and to think about what data would be useful in addressing those risks (answer those questions).
- Our auditors can leverage the skills of specialists in capturing and transforming that data. Our auditors need to think about how they could analyze that data and to visualize the data in order to provide the information or evidence necessary to reach their conclusion,
- We have standard tools and data engineers to help build custom solutions.
 - Mike Leonardson (EY Leader of Analytics)

CONCLUSIONS

Key Questions

- Where in the audit of historical financial statements are these methods to be used?
- How to create an experimentation period where supervised analytics projects are performed in real engagements?
- How to deal with the economic limitations of using data analytic methods in audits?
- How can human and device competencies be created?
- How will data analytics impact regulators' approaches and auditing standards?

Observation

It should be clear that the art of leveraging technology and data analytics will further enhance the quality of the audit and achieve better protection of the public interest.

Audit regulation has the power to accelerate the rate of adoption of analytics and this is a great opportunity for standard setting.

Public Good – Actions to consider

- 1) Adopt the audit data standard to create an easy interconnectivity of audit technology
- 2) Create an experimentation period of dual or multiple audit standards
- 3) Reengineer and re-imagine the structures of accounting and audit education
- 4) Collaborate among the monitoring and standard setters to accelerate and improve accounting and audit standards

Thanks!!
Contact me at
miklosv@rutgers.edu
Visit
http://raw.rutgers.edu

EXTRA SLIDES

Resource:

Audit Data Analytics free on YouTube from the Rutgers Curriculum

1. Introduction to Audit Analytics:

https://www.youtube.com/playlist?list=PLauepKFT6DK8nsUG3EXi6IYVX0CPHUngi

2. Special Topics in Audit Analytics:

https://www.youtube.com/playlist?list=PLauepKFT6DK-PpuseJtSMIIy-YBhaV4TH

3. Information Risk Management:

https://www.youtube.com/playlist?list=PLauepKFT6DK8uxePhPCoHjDf8_DlhRtGS

4. Tutorials for Risk Management:

https://www.youtube.com/playlist?list=PLauepKFT6DK9Grq8J67NMyGpYh1AsBb--

For more information please visit:

http://raw.rutgers.edu/accounting-courses.html

Rutgers Business School