

A Predictive Ordered Logistic Regression Model as a Tool for Quality Review of Control Risk Assessments

Background

- Management and external auditors are required to report on the adequacy of internal controls (SOX 404)
- Internal audit quality is important to external auditors as well as management (Gramling & Vandervelde, 2006)
- External auditors are encouraged to take the work of internal auditors into consideration (AS No. 5)
- SOX requires external auditors to report on the adequacy of the internal controls as well as the management's assessment
- Control Risk Assessments (CRA): a popular tool that helps the auditors to get a better understanding of business processes

Motivation, Research Questions, & Findings

Motivation

TGERS

- Need to develop a methodology for the evaluation of CRA by internal auditors and CRSA by business owners (quality review)
- Need to prioritize identified exceptions (cases that deviate from the predicted values)

Research Questions

- 1. How can we verify and review the quality of internal auditors' (business owners') judgment in control risk assessments?
- 2. How can we prioritize the exceptions that deviate from the norms?

Findings

- CRA: accuracy of fitted model is 83%, predictive model 76.36%
- CRSA: accuracy of fitted model 74.32%, predictive model 76.5%
- Business owners tended to overestimate risk, but showed signs of improvement with time (gained experience)
- Feedback from the company indicates that the ranking metrics were effective

Data

- Source: Multinational consumer products company
- Issues identified by location and business process (e.g. Distribution, Payroll, Purchasing, A/P)

• Data breakdown:

	FY 08/09	FY 09/10	FY 10/11	All (08-11)
CRA	344	305	275	924
CRSA	3310	3138	3145	9593

Ordered Logistic Regression

- Variables: ordinal and labeled (audit risk levels) ۰
- **Ordered Logistic Regression:** ٠

$$y_i^* = logit = ln\left(\frac{prob(event)}{1 - prob(event)}\right) = \beta^T x_i + \varepsilon_i = \beta_0 + \beta_1 CC + \beta_2 MC + \beta_3 NMC$$

- $y_i^* = logit = log of the odds that a certain event takes place.$ $<math>\beta_0 = Intercept$ $\beta_i = Coefficient$ CC = Number of critical issues (identified by auditors/business owners) MC = Number of Major issues (identified by auditors/business owners) NMC = Number of Non-Major issues (identified by auditors/business owners)_
- $y_i = 0$ for $y_i^* \le \mu_L$ (Low risk) •
- $y_i = 1$ for $\mu_L < y_i^* \le \mu_M$ (Medium risk) •
- $y_i = 2$ for $\mu_M < y_i^* \le \mu_H$ (High risk)

Predicted Probabilities Calculations

Predicted probability:

- $PredProb = \widehat{P}(C_i|x) = \frac{1}{1 + e^{-(\beta^T x_i + \varepsilon_i)}}$
 - β^T is a vector of Intercepts
 - x_i is the vector of coefficients
 - The class with the highest calculated probability is the predicted class

•
$$Calc_H = \frac{1}{1 + e^{-\{(Intercept_2 + (CC_Coeff * CC) + (MC_Coeff * MC) + (NMC_Coeff * NMC)\}}}$$

•
$$Calc_M = \left(\frac{1}{1+e^{-\left\{(Intercept_1+(CC_Coeff*CC)+(MC_Coeff*MC)+(NMC_Coeff*NMC)\right\}}}\right) - Calc_H$$

• $Calc_L = 1 - Calc_H - Clac_M$

Outliers Identification and Ranking

Record	СС	MC	NMC	Calc_H	Calc_M	Calc_L	Assign. Class	Pred. Class	Ratio	Diff.
123456	0	2	3	0.60719	0.39195	0.00086	M	H	0.64551	0.21524

$\frac{\textbf{Outliers' disagreement measure:}}{Ratio} = \frac{Calc. prob_Assigned Class}{Calc. prob_Predicted Class}$

Difference = Calc.prob_Predicted Class - Calc.prob_Assigned Class

 $Ratio = \frac{0.39195}{0.60719} = 0.64551$ Difference = 0.60719 - 0.39195 = 0.21524

The lower (bigger) the ratio (difference), the more suspicious the record is

Findings – Auditors

- Accuracy: 83% (fitted model), 76.36% (predictive model)
- Sliding window technique shows consistency of results

Confusion Matrix-Fitted Model (M08/10-D08/10)								
	Assigned Level							
Predicted Level	L	М	Н	Total				
	327	43	0	270				
L	88.38%	11.62%	0.00%	370				
м	40	184	19	242				
IVI	16.46%	75.72%	7.82%	243				
ц	0	8	28	36				
	0.00%	22.22%	77.78%					
Total	367	235	47	649				

Confusion Matrix-Predictive Model (M08/10-D10/11)								
Dradiated Laval	Assigned Level							
Predicted Level	L	м	н	Total				
	142	25	3	170				
L	83.53%	14.71%	1.76%	170				
м	23	58	4	05				
IVI	27.05%	68.24%	4.71%	60				
н	0	10	10	20				
	0.00%	50%	50%	20				
Total	165	93	17	275				

Findings – Business Owners

	Accuracy: 74.32%	(fitted model),	76.5%	(predictive	model)
--	------------------	-----------------	-------	-------------	--------

Confusion Matrix-Fitted Model (M08/10-D08/10)								
Dradiated Laval	Assigned Level							
Predicted Level	L	М	Н	Total				
	3817	1298	17	5122				
L	74.38%	25.29%	0.33%	5152				
м	200	930	87	1017				
IVI	16.43%	76.42%	7.15%	1217				
L	1	53	45	00				
п	1.01%	53.54%	45.45%	99				
Total	4018	2281	149	6448				

Confusion Matrix-Predictive Model (M08/10-D10/11)							
	Assigned Level						
Predicted Level	L	м	н	Total			
	1822	519	2	22/2			
L	77.76%	22.15%	0.09%	2545			
м	119	554	50	703			
IVI	16.46%	76.63%	6.92%	125			
	3	46	30	70			
п	3.80%	58.23%	37.97%	19			
Total	1944	1119	82	3145			

Other Findings

Auditors vs. Business Owners:

- Extreme Outliers in Fitted model: BO 18 IA 0
- Extreme Outliers in Predictive model: BO 5 IA 3
- Highest level of Disagreement: Pred. H Assigned M (BO & IA)
 - Reluctance to assign high risk levels due to the possible ramifications
- Predictive Model Accuracy: increased for BO, decreased for IA
 - Started using CRSA in 2008 BO gained experience with time

Interesting finding:

- 3 records with no issues, but High risk
- Systematic bias to overestimate risk level by BO in general
 - Conservatism

Conclusion

Contribution:

- Proposed a methodology to review the quality of auditors'/Business Owners' assessments of control risk
- Proposed a methodology to prioritize outliers, thus increasing audit efficiency by helping auditors focus their efforts on more suspicious records

Limitations:

- Distance between variables is unknown (L-M vs. M-L and NM-M vs M-C etc)
- Unbalanced datasets (although this is the real life scenario)
- Unknown issues categorization criteria (by the company)

Future Research:

- Develop more sophisticated ranking techniques and compare their performance
- Use bigger datasets (more years)